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Abstract. Topic models such as Latent Dirichlet Allocation have been
useful text analysis methods of wide interest. Recently, moment-based
inference with provable performance has been proposed for topic mod-
els. Compared with inference algorithms that approximate the maximum
likelihood objective, moment-based inference has theoretical guarantee
in recovering model parameters. One such inference method is tensor
orthogonal decomposition, which requires only mild assumptions for ex-
act recovery of topics. However, it suffers from scalability issue due to
creation of dense, high-dimensional tensors. In this work, we propose a
speedup technique by leveraging the special structure of the tensors. It
is efficient in both time and space, and only requires scanning the corpus
twice. It improves over the state-of-the-art inference algorithm by one to
three orders of magnitude, while preserving equal inference ability.

1 Introduction

Statistical topic modeling techniques are powerful tools for exploring large data
sets such as text and social networks. They are frequently used for text sum-
marization, dimensionality reduction and community detection. One important
model is latent Dirichlet allocation (LDA) [6], which has widespread use and vari-
ations in data mining and machine learning. It models documents as mixtures
of multiple topics, while every topic is modeled as a multinomial distribution
over a vocabulary. We consider the unsupervised inference problem for LDA: es-
timating the unknown word distribution of every topic so as to fit the observed
word occurrences in the documents.

The inference can be performed under different principles. Maximum likeli-
hood is the most commonly employed principle, but exact inference based on
this objective is proved to be intractable [5]. Recently, researchers have found
that a new inference principle, method of moments, enables tractable compu-
tations to recover the topics with theoretical bound [2, 3]. The intuition is to
relate model parameters to population moments, which are expected frequencies
of co-occurred word pairs, triples etc., and infer parameters from empirical esti-
mation of the population moments. Under mild assumptions, a tensor orthogonal
decomposition algorithm in [3] can perform error-bounded topic recovery, with
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best known sample complexity and numerical stability. However, it has a severe
scalability issue, which is the the problem we tackle in this paper.

The tensor orthogonal decomposition algorithm has two steps. In the first
step, it collects empirical moments (i.e., expectation of word co-occurrence fre-
quencies) from the data, and constructs two large and dense tensors (i.e., hyper-
matrices). In the second step, it uses the two large tensors to compute a small
tensor, and performs orthogonal decomposition for the small tensor based on an
iterative tensor power method. With their scale being V2 and V3 respectively,
where V' is the vocabulary size, the large and dense tensors are prohibitive to
construct. [3] suggests an alternative by computing the tensor power iterations
on the fly scanning through the original data, without creating any tensor in
memory. However, it requires one scan of the data per iteration. The efficiency
is not satisfactory for large scale corpora.

In this work, we propose a novel strategy to scale up the tensor orthogonal de-
composition algorithm. By careful analysis of the problem, we advocate to avoid
explicit creation of large and dense tensors, but still construct the small tensor
and store it in memory. With this strategy, we bypass the scale bottleneck, yet
are still able to perform efficient tensor power iterations. To directly construct
the small tensor without creating the large and dense tensors, we leverage the
special structures of the moments: sparse, low rank and decomposable. We design
an efficient algorithm that only requires two scans of data in total while con-
suming much smaller space. With experiments on both synthetic and real data,
we demonstrate that our method can be 20-3000 times faster than the state-of-
the-art inference method, while preserving robust topic recovery capability.

2 Related Work

In the last decade, statistical topic modeling techniques have gained popularity.
Two important methods are probabilistic latent semantic analysis (PLSA) [12]
and its Bayesian extension latent Dirichlet allocation (LDA) [6]. They model
the generative process of each word from each document in a corpus. The model
parameters can be partitioned into corpus-level (the unknown word distribution
of every topic) and document-level (the unknown topic distribution of every
document). The goal of inference is to find parameters that best explain the
observed data, i.e., word occurrences in the documents. Yet there are different
principles to quantify what it means by ‘best explain the observed data’.

Most of existing topic model inference methods are based on the mazimum
likelihood (ML) principle (including its Bayesian version mazimum a posterior).
For example, PLSA [12] uses an Expectation-Maximization algorithm to ap-
proximately optimize the data likelihood. For LDA, two most popular approxi-
mate inference methods have been variational Bayesian inference [6] and Markov
Chain Monte Carlo (especially Gibbs sampling) [9]. In spite of the vast body of
followup work, the computational complexity of ML inference is not studied
until 2011. Sontag and Roy [19] show that the document-level inference is not
always well defined, and Arora, Ge and Moitra [5] prove the NP-hardness of
exact corpus-level ML inference.
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In accordance with their theoretical hardness, the above inference methods
tend to suffer from slow convergence and long runtime. As a result, there has
been a substantial amount of work targeting on accelerating the above methods.
e.g., by leveraging sparsity [11, 18, 20] and parallelization [16, 21], or online
learning mechanism [1, 8, 10]. However, none of them have theoretical guarantee
of convergence within a bounded number of iterations, and are nondeterministic
either due to sampling or the random initialization.

Recently, an alternative inference of topic models has been proposed based on
the method of moments [2], and improved in [3]. Compared with ML inference,
it has the following two advantages: i) the distance between inferred corpus-
level parameters and the true parameters has a theoretical upper bound that is
inversely related to sample size; ii) the convergence is guaranteed with a bounded
number of iterations. Another related study [5] assumes the existence of anchor
word that only exists in one topic, and uses that assumption to bound the
recovery error. Its efficiency is improved in [4]. This method requires stronger
assumptions than [2] and the error bound is weaker.

3 Preliminaries

We first introduce the notations:

— The input to the inference problem is a corpus of D documents with vo-
cabulary size V. The i-th document d; has I; word tokens, and the whole
corpus has L tokens in total. We use a k-dimensional vector 0; (i € [D]) to
denote the document-level topic distribution for d;, and o = (aq,...,a)
to denote the Dirichlet prior where 6;’s are drawn from. Larger «; posits
stronger prior at 6; ;. Define oy = Zle a;. We use a V-dimensional vector
¢+ (t € [k]) to denote the corpus-level word distribution for topic ¢. To gen-
erate a token w; ; € [V] in position j of document d;, one first samples a
topic z; ; according to 6;, and then samples a word from ¢., ;

— A tensor is a hypermatrix that can contain more than two degrees. The
outer product ® of any p-degree tensor A € R*1* %% and any g¢-degree
tensor B € R¥+1X"%%p+a ig a (p + g)-degree tensor A ® B € R51 %" *Sp+a
A (24 B[il, N 7ip+q] = A[il, N ,ip]B[ip+1, . 7ip+q];

— For any tensor A € R**%*% matrix B € R*x%1 C' € R**%2 D € R%*%3,
A(B,C, D) is atensor in R *#2X%  A(B, C, D)i1, 42, i3] = 3, ;5 15 A1,
J2, J31Blj1, 11]Clja, i2] D, i3];

— W™ denotes the Moore-Penrose pseudoinverse of W;

— 2(A,a,b,c) permutes the modes of tensor A, s.t. 2(A,a,b,c)li1,is,i3] =
Alia, iy, ic].

We focus on the corpus-level inference problem in this paper. The document-
level inference problem can be solved using the method in [19] after we infer the
corpus-level parameters. Our goal is to recover the unknown ¢;’s based on the
observed corpus.
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Anandkumar et al. [3] propose a tractable exact inference method based on the
method of moments. In statistics, the £-th order population moment of a random
variable is the expectation of its &-th power. The method of moments derives
equations that relate the population moments to the model parameters. Then,
it collects empirical moments from observed samples, and solves the equations
using the empirical moments in place of the population moments.

In our case, the random variable is a token w; ; in a document d;. The value of
w; ; is a word in [V]. The &-th population moment is the expected co-occurrence
of words in £ token positions. We can collect empirical moments from the corpus,
and estimate ¢;’s by fitting the empirical moments with population moments.
For example, the 2nd order moment is a matrix E» € RV*Y. The element
Es[z1,x2] in 21-th row and za-th column of Fs is equal to the probability w; 1
being x; and w; 2 being z, given a.

Ea[x1, 2] = p(wiyn = z1,wi,2 = 2|a)

ko k
:/ p(bile) Z Z p(zin = 11]0:)p(zi2 = t2]0i)p(wi1 = T1|zi1 = t1)
0i t1=1t3=1 (1)
ity Oty at(ae + 1)
)¢t1;961 ¢t2’9€2 + Z 7‘%,%1 ¢t,x2

e =l =t)dh = ) T ao(a0 + 1)
t=1

t1#t2

Likewise, we can derive the 3rd order moment as a tensor E3 € RV*VXV,

The element E3[x1, 22, z3] is equal to the probability w; 1 being 1, w; 2 being
x9 and w; 3 being 23 given a.. The equation below follows a similar derivation as
Eq. (1), written in a more concise form:

A, Olp, Ot
E3 = Z St D1, D G, ® Py
t1F#taFtsF£ Oéo(ao + 1)((10 + 2)
Oty Oty (atl + 1)
+
Z apag + 1) (ap + 2)
k

+¢1, @ bt ® ¢r,) + Z

t=1

(D1, @ Pty @ ry + b1y @ Py, @ Py, + 9
t1#£to ( )

Qg

E%+M%+mm®@®@

ap(ao + 1) (ap + 2)

Moment-based inference methods set the left hand sides to empirical estima-
tion of moments, and solve these equations to estimate the parameters ¢;’s.

In general, one can compute moments of an arbitrary order, but the cost can
be high for computing high-order moments. Fortunately, Anandkumar et al. [3]
find that we only need up to 3rd order moments to infer an LDA model, under
some mild non-degeneracy conditions. We restate their algorithm in Section 4,
and propose a more scalable algorithm in Section 5.

4 Tensor Orthogonal Decomposition

The tensor orthogonal decomposition algorithm for LDA relies on the following
theorem (revised statement of Theorem 4.3 in [3]).
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Theorem 1. Assume that

k k
Mz = Mve®@uve, Mz =Y vy @ v ® vy (3)
t=1 t=1
where Ay > 0,v; € RVt € [k] are linearly independent and ||v¢|| = 1. Given

M, € RV*YV and M3 € RV*V*V as input, the equations can be uniquely solved
for unknown variables A\ and vy in polynomial time.

Proof sketch. Let My = MXM?T be the spectral decomposition of My, de-
fine W = MX~2 as the whitening matriz of My, then v, = /A W7y, are
orthonormal since Zle 0, ® v, = I. Tt follows that Z:le \/L)\—tﬁt RV QU =
Zle AM(WTo)@(WT)@(WTv) = M3(W, W, W) = T. Due to the uniqueness
of tensor’s orthogonal decomposition [3], vy and —A are uniquely determined

from T in polynomial time. So each v, = \/%(WT)V@ and \; are uniquely
t
determined. |

Note that the sole equation My = Zle AU @ vy 18 not sufficient to determine
v; uniquely, because v;’s are not constrained to be orthogonal. By defining M,
and My in the following way, M» fits into Eq. (3):

k k
a «
My =3 2o, My = (ap+ DBy —apMi @ My =Y Ly @4,  (4)
—~ ag =1 40

And the following definition of Mj fits into Eq. (3):

U1:E2®M17U2:Q(U171,372),U3=Q(U172,371> (5)
1 2
M; = MwEB‘Fa%Ml@Ml ® M,
6
aplap + 1) (6)

k

a

_f[Ul‘FUQ‘FUB‘]: E a_;¢t®¢t®¢t
t=1

It is clear now that the corpus-level parameters ¢:’s can be uniquely deter-
mined by up to 3rd order moments. Algorithm 1 outlines the tensor orthogonal
decomposition method for recovering the components, given the summation «y
of Dirichlet prior « as input. It includes two main parts:

1. Lines 1.1 to 1.5 to compute the k x k x k tensor T; B
2. Lines 1.6 to 1.16 to perform orthogonal decomposition of 7' via a robust
power method, and recover the unique A\;’s and v;’s (Line 1.13).

Lemma 5.1 in [3] ensures that the power iteration loop Line 1.10 with iteration
# n converges in a quadratic rate when the tensor T is accurate. The outer loop
with iteration # N ensures the convergence when T is perturbed.
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Algorithm 1. Tensor Orthogonal Decomposition (TOD)

Input: Corpus with L tokens and vocabulary size V', number of components k, number
of outer and inner iterations N and n, ag
Output: The model parameters (a¢, ¢¢),t =1,...,k

1.1 Compute My € RV*Y and M3 € RY*XV*V,
1.2 Compute k orthonormal eigenpairs (o¢, put) of Ma;

1
1.3 Compute the whitening matrix W = MY~ 2;
1
1.4 Compute (W)t = MX7 ;

1.5 Compute a k X k X k tensor T = M3 (W, W, W);
1.6 fort=1..k do

1.7 A"+ 0; // the largest eigenvalue so far
1.8 for outlter = 1..N do
1.9 v < a random unit-form vector in Rk;
1.10 for innerlter = 1.n do v + —Ld:00) ;
_ HT(I,0,0)]
1.11 if T'(v,v,v) > X* then (\*,v") «+ (T(v,v,v),v);
1.12 end
1.13 At = ﬁ, vy = A (WT)To*;
1.14 T+ T—MNv*@v*@v* ; // deflation
1.15 ar = aoAt, pr = Vt;
1.16 end
1.17 return (o, ¢e),t=1,...,k

5 Scalable Tensor Orthogonal Decomposition

5.1 Scalability Analysis of TOD

Although Algorithm 1 theoretically guarantees robust convergence, it is not scal-
able. In general, when we directly deal with large and dense 2nd or 3rd order
tensors, computation cost is huge in both time and space, and this hinders the
scalability of part 1 described in Section 4, where explicit computations for a
matrix of size V2 and a tensor of size V3 are involved. In contrast, part 2
(k x k x k tensor orthogonal decomposition) can be efficient in practice, because
in most cases of LDA inference, only a small number of topics are desired. In
total, the space complexity of Algorithm 1 is O(V3) and the time complexity is
O(V3k + LI2 + Nnk*), where [ is the maximum document length.

Anandkumar et al. [3] discusses a plausible way to reduce the memory cost.
It suggests no explicit creation of the tensors M3 and i but going through
the document-word occurrence data for computing the power iteration update
Line 1.10. This mitigates the space challenge of part 1, but gives away the
efficiency of part 2 of Algorithm 1. One obvious disadvantage is that it needs to
scan the whole corpus for Nnk times to execute Line 1.10. The space complexity
is O(V?) and the time complexity is O(V?k + LNnk).

We make key contributions to solving the challenge in a different approach.
We avoid explicit creation of both tensor M3 and Mz, but we do explicitly
create T since it is memory efficient. It reduces the cost of part 1, and retains
efficient power iteration updates as in part 2 of Algorithm 1. Utilizing the special
structure of the tensors in our problem, we show that T can be created by
scanning the corpus only twice, without incurring creations of any dense V2 or
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V3 tensors. One scan is needed for computing the whitening matrix W, and
the other for computing the tensor product Ms(W, W, W), as discussed in the
following two sections.

5.2 Scalable Computation of Whitening Matrix

To compute the whitening matrix, the straightforward approach by spectral
decomposition of the dense matrix My requires O(V?k) time and O(V?) space.
However, by observation of Eq. (4), we can decouple M into matrix Fy and
My ® M;. Taking advantage of the low rank and sparsity of Eo, we can compute
the spectral decomposition of M5 in an efficient alternative procedure.

Low Rank. We notice that M, F5 and My are in the same column space S
spanned by k linearly independent vectors ¢, t € [k]. Thus Fs> has a low rank.

Sparsity. Let vector ¢; € RV be the counts of word 1 to V in document d;. An
empirical estimation of M7 and FEs is:

21 2
M, = Zz:; Eci, By = ; m[cl ® ¢; — diag(c;)) (7)
where [; = Zrzl Ci, 1s the length of document d;. The estimated M; and Es

can be computed by one scan of the data. 5 is sparse because many word pairs
do not co-occur in the real documents.
Our alternative procedure performs two spectral decompositions, one on the
sparse and low rank matrix E5 and the other on a small size matrix.
1. Let Eo = UX,UT be its spectral decomposition, where U € RY ** is the ma-
trix of k eigenvectors, and X; € R¥** is the diagonal eigenvalue matrix. The
k column vectors of U form an orthonormal basis of S. M;’s representation
in this basis is M| = UTM,;. Now, M5 can be written as:

My = Ul(cg + 1) %1 — aoM| @ MjJUT = UMU”T

2. A second spectral decomposition can be performed on M} € RF¥**. Let the
decomposition be M} = U'XU'T. Tt follows that:

My, =UMUT = (U2 (UU")T

Let M = UU’. Now we effectively obtain the spectral decomposition of My =
MY M7 without explicitly creating M,. With this new procedure, we only need
to store a sparse matrix Fy with m < V2 nonzero elements, and the time
complexity is reduced to O(km + k3) = O(km).

5.3 Scalable Product of M3 and W

The straightforward computation of T = M3 (W, W, W) using explicit M35 and W
requires O(V3) space and O(V 3k + LI?) time, where [ is the maximal document
length. To solve this challenge, we utilize two decomposing laws:
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) (veve)(W,W,W)= W) e (W) (W)= (WTv)®3; and

ii) (ve B)(W,W,W)=WTv)@ BW,W) = (W) 2 (WIBW)
where v is a vector and B is a matrix.

We break down M3 as a summation of multiple tensors, such that the product
between each tensor and W has a decomposable form as in the left hand
side of one decomposing law. According to Eq. (2), M3 is a linear combination
of tensors F3,U;,Us, Us and M?S. We discuss how to efficiently compute the
product between each part and W.

Compute E3(W, W, W). F3 can be estimated by averaging the frequency of all
the 3-word triples in each document. Using the word count vector ¢; we defined
before, we have:

1
E3 = 5 [Al - AQ - 'Q(A27 27 173) - ‘Q(sz 2737 1) + 2A3]
D D (8)
Al = Z pic; Q¢ @ ¢iy Ag = Z pici ® diag(c;), As = Z pitridiag(c;)
=1 =1 =1
where p; = m, tridiag(v) is a tensor with vector v on its diagonal:
tridiag(v); i = v;.
According to decomposing law i) and ii):

A (W, W, W) sz WTe) (9)

Ay(W, W, W) = Z piWTe) @ W diag(c;)W (10)

i=1

Let W be the z-th column of W7. We have:

A WWW Zzpzczz WT (11)

Using Eq. (9)-(11), we can compute E3(W, W, W) without explicit creation of
Ej3. The time complexity is O(Lk?).
Compute M?3(W7W,W),U1(W,W,W),i = 1,2,3. Using the two decom-
posing laws, we can obtain:
(My ® My @ My)(W, W, W) = (WTM;)®? (12)
U(W, W, W) =WTE,W o WM (13)
Eq. (13) requires O(k?m) time to compute, where m is the number of nonzero
elements in Ey. We can further speed it up. By definition we have WT M,W = I.
Substituting My with Eq. (4), we have:
W (o + 1)By — agMy @ MW =T (14)
1

SWIE,W = ———
2 (ao + 1)

[T+ ag(WT M;)®?) (15)
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Plugging Eq. (15) into (13) further reduces the complexity of computing
Uy (W,W,W) to O(VEk + k3). Uy(W,W, W) and Uz(W, W, W) can be obtained
by permuting Uy (W, W, W)’s modes, in O(k?) time.

Putting these together based on the distributive law, we can compute T =
M3 (W, W, W) by one scan of the data:

(Ozo + 1)(0[0 + 2)

T = Ms(W,W,W) = E3(W, W, W)

_O[()(O[() + 1)

5 (U1 + Uz + U3)(W, W, W)] + a2(WT M;)®3

which requires O(Lk? + Vk + k*) = O(Lk?) time.

Algorithm 2. Scalable Tensor Orthogonal Decomposition (STOD)
Input: Corpus with L tokens and vocabulary size V', number of topics k,
number of outer and inner iterations N, n, ap
Output: The model parameters (¢, ¢¢),t =1,...,k

2.1 First scan of data: Compute M; and E» according to Eq. (7);
2.2 Find k largest orthonormal eigenpairs (o¢, pt) of Fa;
2.3 M{ =UDM ; /1 U =[p1,. .., ], X1 = diag(o1,...,0%)
2.4 Compute spectral decomposition for
M} = (o +1)Z1 —aoM{ @ M{ =U' U7,
25 M=UUW=MX =z (W) =MXz;
2.6 Second scan of data: Compute T = Msz(W, W, W) according to Eq. (16);
2.7 Perform power method Line 1.6 to 1.16 in Algorithm 1;
2.8 return (a:, ¢¢),t =1,...,k

5.4 Our Final Algorithm

Algorithm 2 outlines our scalable tensor orthogonal decomposition algorithm.
Line 2.1 scans the data once to collect Eo, and Line 2.2-2.5 are asymptotically
equivalent to Line 1.2-1.4. Line 2.6 uses a second scan of the data to compute
T, which is equivalent to Line 1.5 but much more efficient. The power method
on T remains the same as in Algorithm 1.

In most applications, V2 > L, V2 > m,V > [ > k. We reduce the time
complexity for constructing the small tensor T € R¥*F*k to O(LK? + km),
and the space complexity to O(m). The total time complexity for STOD is
O(Lk? + km + Nnk*). Comparing with TOD, STOD is superior in both space
and time. The practical speedup is significant with orders of magnitude, as we
will demonstrate in experiments.
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6 Experiments

In this section we first introduce the methods used for comparison, then present
evaluation on synthetic and real datasets respectively.

Methods for Comparison. Our main contribution is the STOD algorithm.
It accelerates the TOD algorithm, which has bounded error for LDA inference.
We also compare STOD with one of the most popular LDA inference methods
collapsed Gibbs sampling, although its error is not theoretically bounded. We do
not include other maximume-likelihood based inference methods for LDA, e.g.,
collapsed variational Bayesian inference, because they mostly have a similar per-
formance with collapsed Gibbs sampling, and no theoretical error bound either.
We list the implementation details below:

— STOD - our Algorithm 2. Outer iteration # N and inner iteration # n are
both set to 30. They are sufficient for our experiments. In fact, in most cases,
the algorithm converges with N =n = 10. «y is fixed to be 1.

— TOD — A faster implementation of Algorithm 1 as we discussed in Sec-
tion 5.1. It skips the tensor construction and computes the power iteration
on the fly. Outer iteration # N and inner iteration # n are both set to 30.
g = 1.

— Collapsed Gibbs sampling. We use a fast implementation by Griffiths and
Steyvers [9]. The iteration # is set to 1500, following the common practice.
From now on, we use ‘Gibbs’ or ‘Gibbs sampling’ for short.

For fair comparison, we do not use distributed computation for any of the
methods. We conduct all the experiments on a single Linux server running MAT-
LAB 2013a with Inter Xeon CPU E5-2680 2.80GHz and 256GB RAM.

6.1 Synthetic Data

We use synthetic data to conduct controlled experiments with known topics and
other parameters. With synthetic data we are able to evaluate the error of each
method in recovering the known topics. We compare each method’s: i) topic
recovery error; and ii) runtime.

The generative process of synthetic data simply follows LDA [6]. The length
of each document is generated from a Poisson distribution, where the Poisson
parameter A, or the expected document length, is set to 100. The Dirichlet prior
a of each document-level topic distribution 6; is uniform: a; = %,t € [k]; the
Dirichlet prior 5 of each corpus-level topic-word distribution ¢, is also uniform:
By = @73@ € [V]. The same Dirichlet prior is used for Gibbs sampling infer-
ence. We creat three controlled sets of pseudo corpora by varying the following
parameters:

1. D, ranging from 5,000 to 500,000, with fixed V' = 10000, k = 50.
2. V, ranging from 3,000 to 100,000, with fixed D = 100, 000, &k = 50.
3. k, ranging from 10 to 100, with fixed D = 100,000,V = 10, 000.
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Fig. 1. Performance study on synthetic data (lower values are better)
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Topic Recovery Error. We measure the topic recovery error in the follow-
ing way. For each run of each algorithm, let ¢yt € [k] denote the corpus-level
multinomial distributions inferred by the algorithm; and ¢f,t € [k] the ground-
truth generated from Dirichlet allocation. We compute all the k2 L1 distances:
H<Z~5t1 — ¢}, ll1,t1,t2 € [E], and build a bipartite graph with negative L1 distances
as edge weights. Then we use the Hungarian algorithm to compute a maximum
matching between the inferred topics and the ground truth topics. Finally, we
average the k L1 distances between matched pairs as the error for this run.

Figure la, 1c and le show the recovery errors of different methods. For each
fixed triple of (D, V, k), we run each algorithm for 5 times, then plot the mean
and standard deviation of the 5 recovery errors using an error bar. To put the
numbers in context, we include a baseline ‘uniform’; which reflects the average
distance of a uniform distribution over the vocabulary to every topic.

We observe that TOD and STOD have almost zero variance across multiple
runs, due to the robustness of tensor decomposition. Gibbs sampling produces
large variance comparing with the other two, which is a drawback most existing
maximum likelihood based LDA inference algorithms suffer.

In general, the errors of STOD and TOD decrease when D increases or V. k
decrease, i.e., the sample size increases or the model complexity decreases. This is
because the error of tensor orthogonal decomposition is bounded by the distance
of empirical moments from theoretical moments. For Gibbs sampling, this trend
is not as clear as the moment-based methods. It has no error bound of topic
recovery.

In all these datasets, the moment-based methods TOD and STOD have almost
equal errors. When the corpus size is sufficiently large (D > 50,000 in these
datasets), the error is 37-85% lower than Gibbs sampling. This verifies that
TOD has the state-of-the-art capability of topic recovery accuracy, and that our
STOD algorithm preserves that capability.

Runtime. From Figure 1b,1d and 1f, we see a clear superiority in efficiency of
our STOD algorithm in all the datasets. STOD is faster than TOD and Gibbs
sampling by 1 to 3 orders of magnitude. While TOD is generally faster than
Gibbs sampling, it consumes much larger memory, and fails to terminate when
V =100, 000.

The runtime of STOD grows more slowly with respect to D than Gibbs sam-
pling, because STOD only scans the corpus twice while Gibbs sampling itera-
tively passes through the corpus for thousands of times. The runtime of STOD
grows more tenderly with respect to V' than TOD, because the former does not
even need to construct the dense tensor of size V2. The runtime of STOD grows
more rapidly with respect to k& than Gibbs sampling and TOD, because it con-
structs a tensor of size k% explicitly. Therefore, the advantage of STOD is most
prominent when the corpus size and vocabulary size are large, while the number
of topics is small.
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6.2 Real-World Data

We use two real-world datasets to evaluate the performance of our algorithm in
practice (we perform stemming to the favor of baseline methods, and remove
stopwords in the corpus):

— TREC AP news: A TREC news dataset (1998). It contains 106K full arti-
cles, 170K unique words, and 19M tokens. After preprocessing, the size of
vocabulary is 45,105.

— CS abstract: A dataset of computer science paper abstracts from Arnet-
miner!. The set has 529K papers, 186K unique words, and 39M tokens.
After preprocessing, the size of vocabulary is 51,069.

Runtime. Table 1 shows the overall runtime in these datasets, in two scenarios.
One scenario is that the data can be all loaded into memory, and the other
scenario is that the data are too large to be loaded into memory. STOD is one to
two orders of magnitude faster than the other methods in the first scenario, and
two to three orders of magnitude faster in the second scenario. On the largest
dataset it reduces the runtime of TOD/Gibbs sampling from 3 weeks/1.2 days
to 9.6 minutes.

Table 2 shows the decomposed runtime for STOD and TOD. In both datasets,
the most time consuming part for STOD is the spectral decomposition (Line 2.1
2.5) and tensor construction (Line 2.6). The news dataset has longer documents
but fewer tokens than the CS dataset. As a result, the spectral decomposition
in news dataset bears a larger fraction though the total runtime is shorter than
in CS. The practical implementation of TOD does not create tensors but goes
through the corpus many times to compute the power iteration on the fly, and
that part accounts for the slow execution.

Table 1. Total runtime (in seconds) on real-world datasets (K=>50)

method loaded into memory not loaded into memory
dataset STOD|TOD |Gibbs sampling|STOD| TOD |Gibbs sampling
news 293 | 6877 21641 310 | 768110 48999
CS 541 |14439 47293 577 11661101 102136

Table 2. Decomposed runtime (%) on real-world datasets for STOD and TOD

method STOD TOD
dataset spectral decomp|construct tensor|power iter|spectral decomp|power iter
news 38.0 47.8 14.2 1.2 98.8
CS 11.1 80.7 8.3 1.2 98.8

Quality of Inferred Topics. Lack of gold standard is a well known challenge for
unsupervised topic modeling methods. As such, people have proposed evaluation

! http://www.arnetminer.org
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metrics without relying on labels. The conventional evaluation using the held-out
perplexity of test data has been challenged [7, 17], and found to have negative
correlation with human interpretability. According to the most recent work in
topic model quality evaluation [14], there are two major approaches to measure
the human interpretability: indirect approach with word intrusion, and direct
approach with observed coherence. In this study we take the direct approach,
and use the automated evaluation measure OC-Auto-NPMI in [14], which was
reported to have above 0.9 Pearson correlation with human judgment.

The OC-Auto-NPMI measure for one topic is defined to be the average of
normalized pointwise mutual information between every pair of the top-X words:

X j—1
2 p(w j 5 wi)
OC-Auto-PMI(t) = —— log J 17
0 = X1 2 2" pwptay) )
where w1, ..., wx are the top-X words in topic t. Then the mean of the OC-

Auto-NPMI measure for all the topics can be used to measure the quality of the
inferred topics by an inference algorithm (the higher the better).
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Fig. 2. Quality of inferred topics on real-world data (the higher the better)

As shown in Figure 2, STOD and TOD again have close performance, and
both outperform Gibbs sampling?, by as much as 80% in the news dataset, and
as much as 40% in the CS dataset. The moment-based methods not only have
theoretical low error, but also good practical performance with real-world data.

Table 3 visualizes several example topics with top-ranked words from the
TREC AP news dataset. Since STOD and TOD have identical results in this
experiment, we only keep STOD in the table. We can see when k is set to 25,
these four topics are interpretable in both methods, although a few top ranked
words are less intuitive to interpret in Gibbs. For example, in topic 4 of Gibbs
sampling, word ‘oil’ cannot be recognized as a part of weather topic, while most
of the other words have a strong correlation with weather.

2 We experimented with hyperparameter optimization for Gibbs sampling as well, and
it does not affect the conclusion
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Table 3. Example topics from a 25-topic run of STOD & Gibbs on news

topic 1: finance| topic 2: politics topic 3: law |topic 4: weather
STOD  Gibbs STOD Gibbs STOD  Gibbs | STOD  Gibbs
dollar  cents vote city court court fair oil
yen  market house black case state | cloudy fair
prices  stock |democratic  state state law city coast
late trade senate democratic| judge ruling |[northern state
trade  prices |republican mayor [|abortion union part rain
close dollar bill white ruling abortion| rain texas
london exchange |committee campaign law strike | central national
gold  higher election election |appeals judge | north northen
rate  futurers | members republican | federal case coast part
bid lower party year supreme federal | south north

7 Discussion

In this work, we propose a scalable moment-based inference algorithm STOD
for latent Dirichlet allocation topic model. The algorithm is based on recent
advancement of moment-based inference methods which have robust theoretical
properties. STOD inherits the advantage of low error and high stability, while
solving critical challenge in time and space efficiency. By leveraging the special
structures of the 2nd order and 3rd order moments, we dramatically overhaul the
standard computing procedure to scale up the algorithm. It renders the tensor
orthogonal decomposition for LDA inference practical for the first time, with
orders of magnitude faster speed.

As we observe in the experiments, both STOD and TOD require a certain
amount of documents to estimate the precise empirical moments and recover
the topics with low error. This is easy to satisfy in the setting of large-scale
text corpora, such as the real-world datasets in our experiments. STOD is
most promising when the corpus size is large, and when the number of topics is
small. This makes it a desirable method to summarize a large corpus’ topics in
a hierarchical structure where every topic has a few number of subtopics, which
is one of our ongoing study.

Although we do not compare with distributed or online inference mechanism for
MCMC or variational Bayesian inference, we would like to point out that: i) STOD
can be easily parallelized by employing distributed spectral decomposition method
such as [13, 15], with theoretically guaranteed performance; and ii) STOD scans
the data only twice, which is similar to online inference methods requiring only one
pass of data, but STOD does not trade in inference accuracy. Besides paralleliza-
tion, the advantage of STOD can be further fulfilled by adaptation to dynamic text
collections, or more advanced spectral decomposition methods.
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