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Abstract—During the development or maintenance of an An-
droid app, the app developer needs to determine the app’s secu-
rity and privacy requirements such as permission requirements.
Permission requirements include two folds: (1) what permissions
(i.e., access to sensitive resources, e.g., location or contact list)
the app needs to request, and (2) how to explain the reason of
permission usages to users.

In this paper, we focus on the multiple challenges that
developers face when creating the explanations for permission
usages. We propose a novel framework, CLAP, that mines
potential explanations from the descriptions of similar apps.
CLAP leverages information retrieval and text summarization
techniques to find frequent permission usages. We evaluate CLAP
on a large dataset containing 1.4 million Android apps. The
evaluation results show that CLAP outperforms existing state-
of-the-art approaches, and has great promise to assist developers
for permission requirements discovery.

Index Terms—Security requirement, Android permission, nat-
ural language processing

I. INTRODUCTION

Security and privacy on mobile devices has been a challeng-
ing task [1]–[6]. Recently user privacy gathered new attentions
following the Facebook-Cambridge Analytica data scandal [7].
The current solution for user privacy protection on the Android
platform mainly relies on a permission mechanism, i.e., apps
have to request permissions before getting access to sensitive
resources. Unfortunately, previous work [2] finds that apps
frequently request more permissions than the apps need. To
reduce users’ concerns toward those over-privileged apps [1],
[2] and improve the users’ understanding of permission us-
ages [8], [9], one effective approach is to give the users
warnings by showing natural language explanations [4]. For
instance, WHYPER [10] uses app description sentences to
explain permissions; Android and iOS also launched their
features of runtime permission explanations in 2015 and 2012,
respectively.

Permission explanations are short sentences that state the
purpose of using a permission. Permission explanations are
written by Android developers [11]; within our knowledge,
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Fig. 1: An example showing how CLAP assists developers
with permission requirements, with the dashed rectangle show-
ing sentences recommended by CLAP.

there exists no previous work on studying the steps of multi-
stakeholder elicitation [12] or requirements specification [13]
for writing such sentences. Without these steps, can we rely
solely on developers’ decisions to explain permissions? Al-
though there exist many good examples of app explanations,
it is unclear whether explanations provided by developers are
interpretable from an average user’s perspective. In particular,
three major challenges can reduce the interpretability of an
explanation sentence. (1) Technical Jargons. Due to the do-
main knowledge owned by the developers but not the average
users, the developers’ explanations sometimes contain techni-
cal jargons/logics hard for the average users to understand. For
example, app GeoTimer Lite explains the location permission
as for “geofence” [14]; however, the average users may not
know the meaning of geofence, not to say why geofence
requires the location permission [15]. (2) Optimal Length.
If the explanation is too short, it is likely ambiguous (e.g.,
in Figure 1, it is unclear whether “store locator” refers to
a locator outside or inside the store); on the other hand, if
the explanation is long and wordy, users may choose to skip
it. It can be challenging for the developers alone to make
the decision on the length/degree of detailedness. (3) Rare



Permission Usage. Although it is relatively easy to explain
commonly acknowledged permission usages, e.g., the location
permission in a GPS app, it becomes much more challenging
to clearly explain rare permission usages.

After identifying difficulties in explaining permissions,
we propose the first study on the requirements specifica-
tion/discovery of permission explanations, and we call it the
process of permission requirements discovery. In particular,
we build a recommender system, which recommends a list
of potential requirements for the permission explanation (i.e.,
sentences from similar apps’ descriptions1) so that developers
could refer to the list for improving the interpretability of
their explanations. In Figure 1, we illustrate how our system
helps the developer of an app discover the requirements. First,
by observing sentence 2 and sentence 4, the developer finds
the current explanation “store locator” ambiguous, and then
explicitly specifies indoor/outdoor; second, by observing the
keyword “map” in sentence 3, the developer is reminded of
the map feature and adds it to the explanation; finally, by
observing sentence 4, the developer discovers a new feature,
i.e., indoor locator, to be added to the app.

Because our recommender system leverages similar apps’
descriptions, we name it CLAP, which is the abbreviation
for CoLlaborative App Permission recommendation. CLAP
uses the following four-step process to recommend a list
of candidate sentences. First, based on information from the
current app (the current app’s title, description, permissions,
or category), CLAP leverages a text retrieval technique to rank
every app from the dataset (Section II). Second, for every top-
ranked app, CLAP goes through every sentence in its descrip-
tion text and assesses whether the sentence explains the target
permission (Section III-B). CLAP further processes matched
sentences so that each sentence contains only one explanation
(Section III-A). Third, CLAP aggregates text information of
the top-K similar apps, and uses the aggregated word values
to re-rank the candidate sentences found in the previous step
(Section IV). Finally, for top re-ranked sentences, CLAP post-
processes the sentences to remove duplications and to improve
their interpretability (Section V).

We evaluate CLAP’s performance (Section VI) on a large
dataset consisting of 1.4 million Android apps. First, we exam-
ine the relevance of recommended sentences. To evaluate the
relevance, we extract the purpose-explaining sentences from
916 apps as the gold standard sentences, and compare CLAP-
recommended sentences with the gold-standard sentences.
The evaluation results show that CLAP has a high relevance
score compared with existing state-of-the-art approaches [10].
Second, we conduct a qualitative study on specific examples,
to observe to what extent the CLAP results can help with
the interpretability. The study results show that CLAP can
effectively recommend candidate sentences that are concise,
convey specific purposes, and support a diverse choice of re-

1Alternatively, we can also use privacy documents and runtime permission
messages. However, both data sources are much more scarce than app
descriptions. As a result, we choose to use app descriptions. However, the
two data resources are both applicable to the CLAP framework.

phrasing for the same purpose. These characteristics show
great promise of CLAP in helping developers find more
interpretable explanations and bridging the knowledge gap
between different stakeholders’ viewpoints.

This paper makes the following three main contributions:
• We make the first attempt to study the problem of permis-

sion requirements discovery, with a focus on explaining
an app’s permission to users.

• We propose a novel CLAP framework for addressing
the formulated problem by leveraging similar apps’
permission-explaining sentences.

• We evaluate CLAP on a large dataset and show that
CLAP effectively provides highly relevant explaining sen-
tences, showing great promise of CLAP as an assistant for
requirements discovery of app-permission explanations.

II. SIMILAR-APP RANKER

For the first step of the CLAP framework, we design a
similar-app ranker to find apps (which also use the target
permission) that are the most similar to the current app.

We define the similarity score between the current app
Q and candidate app D on the permission P as the linear
interpolation of scores in four components, i.e., the pairwise
similarities between Q and D’s descriptions, titles, permis-
sions, and categories:

sim(Q,D,P ) = (λ1simdesc(Q,D)

+λ2simtitle(Q,D) + λ3simperm(Q,D)

+λ4simcate(Q,D)) (1)

where the coefficients λi’s control the importance of each
component. Next, we describe the definitions of each similarity
component.

A. Description Similarity

To model the similarity between two descriptions, we use
Okapi BM25 [16], In contrast, previous work [17] uses the
topic modeling technique to capture the similarity between
app descriptions. The reason why we choose to use a retrieval
model for app descriptions is that app descriptions are usually
longer texts (on average an app description contains 135
words). For long texts, the topic modeling technique would
bring two apps together even if they only remotely belong
to the same topic (instead of closely related, e.g., email apps
and SMS apps are “similar” by the topic modeling technique,
although they clearly have different functionalities). On the
other hand, text retrieval models capture more discriminative-
ness between the descriptions, so they are more suitable for
our problem.

To model the text similarity using BM25, we further capture
both the unigrams and bigrams from the description text. We
stem the description texts before turning them into unigrams
and bigrams. In addition to stemming, we also carry out
the following pre-processing steps, which are standard pre-
processing techniques in text retrieval tasks. These standard
techniques improve the ranking performance by enhancing the
discriminativeness of each app description.
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Stop-word Removal. We remove regular English stop
words from Python’s nltk stop words list [18], e.g. “the” and
“a.” Meanwhile, words such as “Android,” “application,” and
“version” should also be treated as stop words, because they
can appear in any app. We identify a complete list of 294
words. We create the list by empirically scanning through
the top frequent words, and then manually annotating whether
each word can appear in any app, regardless of the context.
The list can be found on our project website [19].

Background-sentence Removal. A mobile-app description
usually contains some sentences that explain common issues,
e.g., “fixed bug in version 1.7.” Same as stop words, such
sentences are “stop sentences”, which do not help explain the
unique functionality of the app. As a result, we implement
a remover of common background sentences for mobile apps
using 53 regular expressions. Same as the creation of stop
words, the creation of regular expressions is based on the
empirical judgment on whether a sentence can appear in any
app, e.g., .*version\s+\d.* detects whether a sentence
describes a version number. The list of regular expressions can
be found on our project website [19].

After the preceding pre-processing steps, we obtain the
BM25 scores between the current app Q and every candidate
app D in the dataset. To make the description similarity
comparable to other similarity components, we normalize
the BM25 scores with the maximum BM25 score over all
the candidates before plugging the normalized score into
Equation 1.

B. Title Similarity

An app’s description usually offers the most information
to capture its similarities with other apps [17], but if CLAP
uses only the descriptions, sometimes it is difficult to retrieve
accurate results, due to the noisy components in descriptions
that are not fully cleaned in pre-processing2. To this end, app
titles can serve as a complement to descriptions in modeling
app similarities.

One challenge in modeling the title similarity is the vo-
cabulary gap between similar words, e.g., “alarm” and “wake
up clock,” mainly because titles are short texts (on average
a title contains 2.8 words). As a result, we use a different
technique to model the title similarity. We leverage word em-
bedding vectors [20] (GoogleNews-neg300 [21]) for bridging
the vocabulary gap. For each pair of apps Q and D, we define
their title similarity as the average cosine similarity between
each word w1 ∈ Q and each word w2 ∈ D. To avoid over-
matching unrelated word pairs, we empirically cut the cosine
similarities at 0.4 and set them to 0 if their original scores are
less than 0.4.

C. Permission Similarity

Because app permissions are categorical data, we model
the permission similarity as the Jaccard distance between
the two permission lists. The reason why we incorporate

2For example, many app descriptions contain SEO words, which may not
be strictly relevant to app functionality.

the permission similarity is based on the observation that an
app’s permissions can reflect its functionality. For example,
emergency contact apps usually use READ_CONTACTS and
ACCESS_FINE_LOCATION at the same time, and the usage
of location permission distinguishes these apps from other
contact apps.

Previous work [17] leverages security-sensitive APIs to
model the similarity between apps. Security-sensitive APIs
are a finer-grained version of Android permissions. Although
APIs carry more information than the permissions, it is also
more challenging to model the API similarity. The challenge
comes from the fact that developers often use different APIs
to achieve the same functionality (e.g., a Stack Overflow
post [22] shows several different techniques to obtain user
location), and use the same API to achieve different func-
tionalities. As a result, we model only the permission-level
similarity and leave the exploration of API similarity for future
work.

D. Category Similarity

Finally, we capture the category similarity between the two
apps. The reason for using the category information is that we
observe multiple cases where using only the descriptions is
ambiguous. In some cases, the category information can help
clarify the apps’ functionalities. For example, we find two apps
whose descriptions are close to each other, and yet one app
is a cooking app for cookie recipe while the other app is a
business app for selling cookies. We represent each category as
a TF-IDF vector, which comes from words that appear in the
descriptions of apps in the category. The similarity between
Q and D is defined as the cosine similarity between the two
vectors.

III. IDENTIFYING PERMISSION-EXPLAINING SENTENCES

After retrieving similar apps of the current app Q, the next
step of CLAP is to identify permission-explaining sentences
among those similar apps’ descriptions.

Previous work such as WHYPER [10] addresses this
problem (of identifying permission-explaining sentences) by
matching sentences from the app description against frequent
words in the permission’s API documents. WHYPER uses
only the entire description sentences to explain the permission.
In our problem, however, using the entire sentences can be
ineffective. The reason for such ineffectiveness is that we are
using other apps’ sentences to explain the current app. An en-
tire sentence from another app sometimes contains redundant
information: while a part of the sentence matches the current
app’s purpose, the other part does not match it. For example,
the sentence “save the recording as a ringtone and share it
with your friends” describes the usages of two permissions:
RECORD_AUDIO and READ_CONTACTS, whereas the current
app uses only the first permission. If we use the entire sentence
to explain the current app, the second part is irrelevant,
whereas if we discard the entire sentence, the relevant part is
also discarded. In such cases, if we break the original sentence
into shorter units, the first part will contain only the relevant
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information. CLAP leverages this methodology to break the
original sentence into shorter ones so that some of them are
more relevant than the original sentence. We describe this
process in Section III-A.

A. Breaking Sentences into Individual Purposes

To break a sentence into shorter ones, we leverage the
Stanford PCFG parser [23] to parse each sentence s into a
tree T . In particular, we extract its sub-sentences based on
two main observations. First, following the aforementioned
example, if the sentence contains conjunction(s), we split it at
the conjunction(s), and then extract the sub-sentences. Second,
as discussed in previous work [10], [24], permission usages
can usually be captured by short verb phrases, e.g., “create
QR code from contact,” “assign contact ringtone.” Therefore,
we also extract the verb phrases in the sentence.

After the split, CLAP adds both the original sentence and
the shorter sentences into a candidate sentence set, which is
then passed on to the next step for identifying permission-
explaining sentences. We intend to include as many candidate
sentences as possible to boost the quality of the finally chosen
ones. Therefore, when we traverse the parsing tree T , we keep
all the verb phrases; e.g., if one verb phrase is embedded in
another, we include both of them in the candidate set.

We summarize our candidate-sentence generator in Algo-
rithm 1 for a clearer view, where s(n) denotes the phrase (in
sentence s) corresponding to node n.

Algorithm 1: Constructing Candidate Set
Input : Sentence s and its tree structure T obtained

from constituent parsing [23];
Output: Candidate sentences S from s;

1 S ← ∅;
2 S ← S ∪ {s}; // add the original sentence
3 for node n in T do
4 if n = V P then
5 S ← S ∪ {s(n)}; // add verb phrase
6 end
7 if n = CC then
8 for node n0 in n.parent.children and

n0! = CC do
9 S ← S ∪ {s(n0)}; // break conjuncts

10 end
11 end
12 end

B. Matching Permission-Explaining Sentences

Using Keyword Matching. After obtaining the candidate
sentence set from the preceding step, we use a pre-defined
set of rules to match each candidate sentence, and keep
only those sentences that address the target permission. More
specifically, the pre-defined set of rules include keywords and
POS tags [25]. The reason why we leverage the POS tags is
to disambiguate between a word’s senses based on its tag. For
example, when the word “contact” is used as a noun, it usually
refers to phone contacts, so it explains READ_CONTACTS,

whereas if it is used as a verb, e.g., “contact us through
email,” it does not explain READ_CONTACTS. The pre-
defined keywords and POS tags set can be found on our project
website [19].

Using WHYPER to Match Sentences. Alternatively, we
can use WHYPER in this step. The reason why we use the
keyword matching is for a low time cost and for real-time
processing. WHYPER traverses the entire dependency parsing
graph. This step makes WHYPER run at least 100 times slower
than the keyword matching. Meanwhile, the size of our data
dictates that we need to process tens of millions of sentences
for each permission. As a result, we use keyword matching
to speed up this step. We plan to support WHYPER in future
extensions of CLAP.

After the preceding steps, we discard apps that CLAP has
not identified any sentences from.

IV. RANKING CANDIDATE EXPLAINING SENTENCES

After the preceding steps, CLAP obtains similar apps and
candidate permission-explaining sentences. Next, CLAP ranks
the candidate sentences and recommends the top sentences to
the developer.

Why Ranking Sentences? After obtaining explaining sen-
tences, a straightforward technique for recommending sen-
tences is the greedy technique, i.e., scanning through the app
list top-down and extracting the first 5 sentences. However,
this simple technique makes mistakes for the following two
reasons. First, due to the noise in the data, the retrieved similar
apps inevitably contain false positive ones3. As a result, it
is very likely for the greedy technique to select sentences
from a mismatched app; sentences from mismatched apps
usually discuss different purposes. Second, even if an app
is correctly matched, it may still use the same permission
for a different purpose. For example, an alarm app may use
ACCESS_FINE_LOCATION for weather report and adver-
tisement at the same time.

Ranking Candidate Sentences with Majority-Voting.
Because the greedy technique could easily recommend false
positive sentences, CLAP adopts an alternative technique: it
builds a large set of candidate sentences by breaking and
matching the sentences in the top-K apps (i.e., the preceding
steps in Section II-Section III), and it then leverages a ranking
function to recommend the top-ranked sentences from the
candidates. The top-ranked sentences are expected to be more
likely the true permission usage. But we do not know the
true permission usage; so how to design the ranking function?
To answer this question, we get the inspiration from the
majority-voting principle [28]. In particular, the more frequent
an explanation is seen in the data (i.e., the similar apps’ expla-
nations), the more likely this explanation is widely accepted

3After exploring three retrieval techniques: BM25 [16], language
model [26], and vector space model [27], we find that all the techniques
generate false positive results. Such results are due to noisy components in
the app descriptions, e.g., SEO words that are sometimes irrelevant to the
primary app functionality.
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by peer developers; as a result, the more likely this sentence
is describing the true permission usage.

To adopt the majority-voting principle, we need to find
out how frequent each explanation is, or how many votes
each sentence receives. The votes should not be based on a
sentence’s exact-matching frequency in the dataset; a sentence
may have appeared only once, and yet its purpose is repeated
many times in other sentences. That is to say, votes should
reflect the semantic frequency of the stated purpose. We
can estimate the semantic frequency of a sentence by first
estimating the semantic frequencies of its words, and then
averaging them to get score of the sentence.

Semantic Frequency of a Word. We may use a word’s
term frequency to represent its semantic frequency (in the
dataset); but if so, the top-ranked words would be non-
discriminative, even after removing stop words. For example,
the top-3 most frequent words for READ_CONTACTS are
“contact,” “contacts,” and “read.”

If these words are used to recommend the sentence, they
would likely recommend sentences such as “to read contacts,”
which does not address any specific purpose. As a result, we
build a discriminative word-voting function by leveraging the
inverse document frequency (IDF [29]) and text summarization
techniques.

We compute the votes for each word with the following
two-step process. First, we apply a text summarization algo-
rithm [30] to turn each app description into a 〈word, weight〉
vector, and compute the average vector over all the top-K
similar apps. Second, for each 〈word, weight〉 pair in the
average vector, we multiply the word’s weight by its IDF
value in the dataset. The resulting vector represents the votes
that each word receives. The text summarization algorithm
is TextRank [30], which is a graph-based algorithm based-
on PageRank [31]. TextRank takes a document as input, and
outputs a 〈word, weight〉 vector by leveraging the affinity of
word pairs.

The weight associated with each word represents how much
the word connects with other words, or how important it is to
the document. After obtaining the TextRank scores, we further
normalize the weights so that the weights from different apps
are comparable to each other. In summary, the votes for a word
are defined as:

votes(w) = IDF (w)× 1

K

K∑
k=1

TextRank(w,Dk)

max
w′∈V

TextRank(w′, Dk)
(2)

where V is the vocabulary set and Dk represents the k-th
similar app retrieved by our app ranker (Section II). Some
examples of the top-ranked words are shown in Table IV. We
can see that the most voted words are often strongly related
to the true permission usage.

Semantic Frequency of a Sentence. The votes for each
sentence s are the average over the votes for each word:

votes(s) =
1

|s|
∑
w∈s

votes(w)

V. POSTPROCESSING PERMISSION-EXPLAINING
SENTENCES

Finally, CLAP post-processes the most voted sentences
from the preceding steps. The post-processing includes the
following two steps.

Removing Duplicated Sentences. After the sentences are
ranked by their votes, some sentences may be duplicated. To
ensure the diversity of the resulting sentences, we use the
greedy technique to select the first 5 unique sentences and
recommend them to the developer.

Adding Direct Mentions of Permissions. Note that one
sentence can most clearly explain the target permission when
the sentence explicitly mentions the permission’s name. On
the other hand, some sentences contain only implicit mentions
of the permission usage. For example, the sentence “send
text messages to your contacts” explicitly mentions the target
permission READ_CONTACTS while another sentence “send
text messages” only implicitly mentions the permission. To im-
prove the interpretability of the resulting sentences, CLAP uses
a list of pre-defined rules to rewrite an implicit permission-
mentioning sentence into an explicit permission-mentioning
sentence. For example, “send text messages” is rewritten to
“send text message (from/to contact).” Our evaluations do
not rely on the post-processing. However, the post-processing
steps intuitively help with the understanding of the resulting
sentences. The pre-defined rules used for post-processing can
be found on our project website [19].

VI. EVALUATION

To assess the effectiveness of CLAP, we design experiments
to answer an important research question: to what extent can
CLAP help developers with improving the interpretability of
explanation sentences?

To answer this research question, we need to first vali-
date the relevance of a recommended sentence to the app’s
permission purpose. Notice that for assisting the developer
in writing explanations, a recommended sentence must first
be relevant to the current app’s permission purpose, i.e.,
the sentence discusses the same permission purpose as the
current app. Otherwise, the sentence would be invalid for
helping the developer, wasting the developer’s time to read
such sentence. To evaluate the relevance of recommended
sentences, we conduct quantitative studies using two groups
of test collections4 (Section VI-E and Section VI-F). The first
group contains gold-standard permission purposes explicitly
annotated by app developers; the second group contains gold-
standard sentences annotated by two authors of this paper. Af-
ter evaluating the relevance, we conduct a qualitative study to
inspect the interpretability of example recommended sentences
(Section VI-G).

A. Dataset

We use the PlayDrone dataset [32], which is a snap-
shot of the Google Play store in November 2014. Our

4A test collection contains a set of 〈app, sentence〉 pairs where the sentence
explains the permission usage of the app.
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TABLE I: Sizes of our three app-sets and five test collections:
Qauthr’s, author-annotated explanations; Qdev’s, developer-
annotated explanations.

app-set Qauthr Qdev

CONTACT 62,147 48 160
RECORD 75,034 48 103
LOCATION 76,528 N/A 564

dataset consists of 1.4 million apps in total. In order to
fairly compare with the state-of-the-art technique for per-
mission explanation, i.e., WHYPER [10], we study three
permissions [33]: READ_CONTACTS, RECORD_AUDIO, and
ACCESS_FINE_LOCATION5. We denote the set of apps
containing each of the three permissions in a different font:
CONTACT, RECORD, and LOCATION. We keep only those
apps whose descriptions are in English. We show the sizes of
the three app-sets in Table I. Because the original LOCATION
app-set is too large (more than 360,000 apps), we sample 21%
apps from the original set for efficiency. Column #Apps of
Table I shows the sizes of the three app-sets.

B. Extracting Gold-Standard Sentences

When measuring the quality of a recommended sentence,
the gold-standard sentence is the ideal explaining sentence
to compare with. Strictly speaking, it is difficult to obtain
a large-scale gold-standard test collection without soliciting
annotations from the developers themselves. However, we are
able to obtain a significant number of gold-standard sentences
through (1) discovering a small set of apps where the devel-
opers have annotated the permission usages, and (2) manually
annotating a collection of explaining sentences. We describe
the two techniques as below6.

Developer-Annotated Explanations. In the PlayDrone
dataset, we observe that a small number of apps (2‰) have
included permission explanations in their app descriptions. For
example, app AlarmMon [34] appends the following sentences
to its main body of description: “AlarmMon requests access for
reasons below...: ... ACCESS_FINE_LOCATION: AlarmMon
requests access in order to provide the current weather for
your location after alarms...” After observing a significant
number of gold-standard sentences annotated by developers,
we find that these sentences appear in a clear textual pattern:
these sentences are usually located at the end of the app
descriptions, with a capitalized permission name followed by
a permission-explaining sentence. As a result, we can use
regular expressions to automatically extract such sentences
from raw description texts (the regular expressions can be
found on our project website [19]). We manually inspect a
small sample of extracted sentences to double check whether
the regular expressions work as expected, and the results of

5The reason for us to choose the three permissions is that the WHYPER
tool [10] provides full pipelines for only three permissions. For other permis-
sions, although it is possible to complete the full pipeline with our efforts,
the comparison against baselines may not be fair. We plan to include more
permissions in future work.

6All test collections in this paper can be found on our project website [19].

our manual inspection have an average precision of 97%. We
use this technique to obtain three test collections for our three
permissions, denoted as as Qdev’s. We show the number of
〈app, gold-standard sentence〉 pairs in each Qdev in Table I.

Author-Annotated Explanations. Although Qdev’s can
reflect permission explanations, there exist length biases in
Qdev’s. The average length of app descriptions from Qdev’s
(330 words) is 2.4 times that of all app descriptions (135
words). The reason for such difference is that apps that care-
fully address permission explanations tend to carefully address
the entire app description as well. Because CLAP is built on
top of text retrieval models, its performance depends on the
length of the current app’s description. In order to observe
CLAP’s performance on shorter app descriptions, we follow
the evaluation technique from previous work [10] to uniformly
sample apps from the entire app-set (for each permission),
and then manually annotate the gold-standard sentences. Two
authors go through each description sentence, independently
annotate the sentences that explain the target permission, and
discuss to resolve annotation differences if any. In total, the
manual efforts involve annotating ∼2,000 sentences for each
test collection. We denote the author-annotated collections as
Qauthr’s, and show their sizes in Table I7.

Discussions on the Sizes of Test Collections. The sizes of
our test collections range from 48 to 564, which is relatively
small. However, it is also almost intractable to obtain larger
collections. First, manual annotations on permission explana-
tions require a reasonable amount of domain knowledge in
mobile apps and technologies. As a result, these efforts cannot
be trivially replaced by crowd-workers’ annotations. Second,
we also cannot rely on existing tools for automatic annotations.
We test state-of-the-art sentence annotation tools in previous
work [10], [24]. Unfortunately, these tools have large false
positive rates8, and therefore the annotated sentences by these
tools are not clean enough to serve as gold-standard sentences.
In total, our five test collections consist of 916 〈app, gold-
standard sentence〉 pairs.

C. Evaluation Metrics

To evaluate the relevance of CLAP-recommended sentences
to the gold-standard sentence, we define the following metrics.

SAC: Sentence accuracy based on manual judgment. After
obtaining sentences recommended by CLAP (and sentences
recommended by all baselines), we manually judge the accu-
racy of the results. For each pair of gold-standard sentence
× CLAP-recommended sentence, two authors independently
judge whether the sentences in the pair are semantically
identical, and discuss to resolve the judgment differences if

7Due to significant manual efforts needed in the annotations, we construct
only CONTACTauthr and RECORDauthr without constructing LOCA-
TIONauthr for the work in this paper.

8We evaluate false positive (FP) rates of WHYPER [35] and AutoCog [24]
on the WHYPER benchmark. WHYPER has a 20% FP rate on the
READ_CONTACTS app-set and 21% FP rate on the RECORD_AUDIO app-set.
AutoCog has a 33% FP rate on the READ_CONTACTS app-set.
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TABLE II: The quantitative evaluation results of text-similarity scores: JI (average Jaccard index) and WES (average word-
embedding similarity). The highest score among the four approaches is displayed in bold, and the second highest score is
displayed with a †. We also show the p-values of T-tests between the highest score and second highest score, and the p-value is
shown in bold if it is significant (less than 0.05). The parameter settings here are λ1 = λ2 = 0.4, λ3 = λ4 = 0.1, top-K=500.

CONTACTdev RECORDdev LOCATIONdev CONTACTauthr RECORDauthr

top1 top3 top5 top1 top3 top5 top1 top3 top5 top1 top3 top5 top1 top3 top5

JI

T+K 0.015 0.015 0.014 0.054 0.052 0.054 0.019† 0.019† 0.019† 0.065† 0.061† 0.061† 0.064 0.069 0.069
T+W 0.023† 0.026† 0.026† 0.092 0.087† 0.086† \ \ \ 0.058 0.059 0.055 0.118† 0.107† 0.108†
R+K 0.013 0.008 0.008 0.042 0.044 0.043 0.014 0.012 0.012 0.042 0.037 0.043 0.090 0.082 0.084

CLAP 0.032 0.036 0.037 0.091† 0.105 0.103 0.027 0.025 0.023 0.186 0.170 0.152 0.133 0.147 0.129
p 0.18 0.07 0.03 \ 0.16 0.15 0.04 0.03 0.03 6e-4 7e-5 1e-4 0.065 0.06 0.27

WES

T+K 0.012 0.013 0.012 0.041 0.040 0.040 0.014† 0.014† 0.014† 0.040† 0.040† 0.039† 0.033 0.040 0.040
T+W 0.016† 0.018† 0.019† 0.061† 0.060† 0.060† \ \ \ 0.038 0.039 0.036 0.056† 0.051† 0.050†
R+K 0.012 0.010 0.010 0.039 0.035 0.038 0.010 0.010 0.010 0.025 0.027 0.031 0.045 0.041 0.043

CLAP 0.031 0.033 0.033 0.079 0.084 0.081 0.025 0.023 0.021 0.114 0.107 0.097 0.070 0.076 0.068
p 3e-4 2e-4 5e-4 0.11 9e-3 9e-3 6e-5 3e-6 5e-7 1e-5 5e-7 2e-6 0.28 4e-3 0.02

any9. This step gives rise to 2×48×4×5 = 1, 920 sentence-
pair labels.

AAC: App accuracy based on manual judgment. In addition
to the sentence accuracy, we also evaluate the accuracy of
the app where the recommended sentence comes from. The
reason to evaluate the app accuracy is that the developer may
want to further make sure that the retrieved apps share the
same functionality with the current app. For each pair of
〈retrieved app, the current app〉, two authors independently
judge whether the apps in the pair share the same functionality,
and discuss to resolve judgment differences if any. This step
gives rise to 2× 48× 4× 5 = 1, 920 app-pair labels10.

JI: Average Jaccard index [36]. We propose to use an
automatic evaluation metric. The average Jaccard index mea-
sures the average word-token overlap between a recommended
sentence and the gold-standard sentence. We remove stop
words in both sentences to reduce the matching of non-
informative words.

WES: Average word-embedding similarity. The average
Jaccard index measures only the word-token overlaps. To
better capture the semantic similarity, we propose to use
another automatic metric, the average cosine distance between
word embedding representations of the two sentences [21], in
short as WES. WES shares the same formulation as the title-
similarity function in Section II-B. More precisely,

WES(sr, sg) =
1

|sr|
1

|sg|
∑

w1∈sr,w2∈sg

sparse cos(w1, w2)

where sr and sg are the recommended sentence and the
gold-standard sentence, respectively. sparse cos is set to the
word2vec similarity (between w1 and w2) if the word2vec
similarity is larger than 0.4; otherwise, sparse cos is set to
0.

For each metric, we report the overall average scores over
the top-1, top-3, and top-5 recommended sentences.

9For example, if gold-standard sentence s1 = “this app uses your contacts
permission for contact suggestion,” recommended sentence s2 = “to automat-
ically suggest contact,” and s3 = “to read contacts,” we judge s2 as relevant
and s3 as non-relevant.

10For example, for app a1 = “group sms,” a2 = “group message,” and a3
= “sms template,” we judge the app a2 as relevant and a3 as non-relevant.

D. Alternative Approaches Under Comparison

Because no previous work has focused on the same setting
as our problem, we cannot compare CLAP’s performance with
an end-to-end approach that entirely comes from any previous
work. However, we can build baseline approaches by following
intuitive strategies to assemble state-of-the-art approaches as
below.

Top Similar apps + Permission Keywords (T+K). For the
first baseline approach, we go through the same process for
ranking apps (Section II) and matching permission-explaining
sentences (Section III-B). However, instead of breaking and
ranking sentences, this baseline approach scans through the
original description sentences top-down and greedily recom-
mends the first 5 sentences matched by our keyword matcher
(Section III-B).

Top Similar apps + WHYPER (T+W). This alternative
approach follows the same pipeline as T + K, except that the
sentence matching is through WHYPER [10] instead of our
keyword matcher.

Random Similar apps + Keywords (R+K). This alterna-
tive approach follows the same pipeline as T + K, except that
the sentence selection is not through the greedy way. Instead,
the recommended sentences are randomly sampled from all
the original sentences matched by our keyword matcher.

E. Automatic Quantitative Evaluation: Text-Similarity Scores

For the first step of the quantitative study, we examine
the automatic evaluation metrics JI and WES on the five
test collections (including 916 gold-standard sentences). In
Table II, we report the average JI and WES over the top-1, top-
3, and top-5 sentences recommended by CLAP and the three
baselines. To configure the parameter settings for the study, we
empirically set the top-K in the majority voting (Section IV) to
500; we empirically set λ1 = λ2 = 0.4 and λ3 = λ4 = 0.1 in
the similar-app ranker (Equation 1), where the λi’s are shared
by all the four approaches. The reason for us to set larger
weights on the titles and descriptions than on the permissions
and categories is that the titles and descriptions have more
discriminative power than the permissions and categories.

Result Analysis. To observe CLAP’s performance, for each
setting in Table II: 〈test collection, top-K, metric〉, we highlight
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TABLE III: CLAP’s WES results of excluding app descrip-
tions (denoted by “-desc”), excluding titles (denoted by “-
title”), and including all four components (denoted by “all”)

-desc -title all
CONTACTdev 0.026 0.037 0.033
RECORDdev 0.035 0.077 0.081
LOCATIONdev 0.015 0.024 0.023

the approach with the highest score (marked in bold) and
second highest score (marked with †). We conduct statistical
significance tests, i.e., T-tests [37], between the two scores. We
display the p-values of the T-tests. A p-value is highlighted in
bold if it shows statistical significance (i.e., p-value less than
0.05). We can observe that CLAP has the highest score over all
the settings except for 〈RECORDdev , JI〉. We can also observe
that the majority of T-test results are significant. The three least
significant settings are JI in CONTACTSdev , RECORDauthr,
and RECORDauthr. In general, CLAP performs better in
WES than JI. Because WES captures external knowledge with
word embedding vectors while JI captures only the word-token
overlaps, WES models the semantic relevance between the
recommended sentences more closely.

On the other hand, when comparing the scores across
different top-K values, we can observe that the p-values of
the top-5 scores are slightly more robust than those of the
top-1 scores. This difference can be explained by the fact that
each of the top-5 scores is the average over 5 scores while
each of the top-1 scores is an individual score.

Among the three baselines, T + W performs better than T +
K, indicating that WHYPER performs better than our keyword
matching technique (Section III-B). T + K performs better than
R + K, indicating that sentences from the top similar apps are
more relevant than those from random similar apps.

Effects of CLAP’s Parameters. To study the effects that
CLAP’s parameters have on its performance, we conduct two
experiments where we vary the parameters (λi and top-K) and
examine how the results change with these parameters.
λis: λis determine the importance of each component in

the similar-app ranker. We study two variants of λis (while
fixing the top-K): (1) excluding app descriptions; (2) excluding
titles. In Table III, we show CLAP’s performance in these two
settings. We can see that excluding the descriptions always
hurts the performance, while excluding the titles can improve
the performance. This result indicates that app descriptions are
more important than app titles for ranking similar apps.

Top-K: the top-K determines how many similar apps to use
for the majority voting. We study the effects of varying the
top-K value while keeping the λis fixed. We plot CLAP’s
performance in Figure 2. We can see that the overall WES
scores are relatively stable; for location data, the scores slightly
increase as the top-K increases.

Summary. The main difference between CLAP and the
baseline approaches is that CLAP (1) breaks the sentences
into shorter ones; (2) ranks the sentences through majority
voting. This result indicates that the two heuristic strategies are
effective in improving the relevance of the resulting sentences.

100 200 300 400 500

10−1.5

top-K

W
E

S

CONTACTdev

RECORDdev

LOCATIONdev

Fig. 2: CLAP’s WES results across different K values
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Fig. 3: The quantitative evaluation results of manually-judged
accuracy: bar plots show the average accuracy of top-5 re-
sults in each of the four approaches. The upper plot shows
results on CONTACTauthr; the lower plot shows results on
RECORDauthr; T-test between the highest and second highest
scores in each group are 9e-7, 0.03, 9e-6 (upper) and 4e-6,
0.04, 1e-4 (lower). Parameter settings are λ1 = λ2 = 0.4,
λ3 = λ4 = 0.1, top-K=20.

F. Quantitative Evaluation: Manually-Judged Accuracy

For the second step of the quantitative study, we conduct
a manual evaluation on the sentence accuracy (SAC) and app
accuracy (AAC). This step is for obtaining more interpretable
metrics (accuracy) than JI and WES. The SAC/AAC scores
reflect how high percent of the top resulting sentences/apps are
relevant. Because SAC/AAC scores come from human judg-
ment, they also more precisely capture the semantic relevance
than JI and WES. In Figure 3, we plot the SAC and AAC of the
four approaches over the top-5 recommended results. We also
plot the average SAC×AAC, which reflects how high percent
of 〈app, sentence〉 pairs (among top-5 results) contain both a
relevant sentence and a relevant app. Here the parameters are
fixed to λ1 = λ2 = 0.4, λ3 = λ4 = 0.1 and top-K = 20.

Results Analysis. Figure 3 shows that CLAP has signifi-
cantly better performance in all the three metrics. Given the
results from Table II, the SAC results are expectable; however,
the AAC results are surprising. This serendipity comes from
the fact that the baselines (T + K and T + W) follow the
greedy technique of recommending the most similar apps,
while sometimes those apps turn out to be less similar than
the apps recommended by CLAP. Such result might indicate
that CLAP has the potential to discover even more relevant
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TABLE IV: Example sentences recommended by CLAP

current app (Q) CLAP-recommended sentences votes(w)

CONTACTdev

• app name: lazy love

• app description: lazy love allows you to
send messages to your friends and loved
ones so you don’t forget to send to who
matters...

• ground truth: automatically send SMS to
contacts at scheduled time

• to send a scheduled message ( from/to
phone contacts );

• can set the time to send message ( from/to
phone contacts ) or email

• typed in or selected from contacts;
• randomly selects a message ( from/to phone

contacts ) and person from your list to send
a message

love
send

message
feel
text

select
set

RECORDdev

• app name: build doc

• app description: builddoc is an easy-
touse project based photo documentation
application that allows you to capture
field issues and assign and mange team
member’s taskse ...

• ground truth: to record voice and audio
notes

• creating audio notes using the device mi-
crophone ( to record voice );

• use your own ( recorded ) voice to create
audio note;

• record voice notes to explain expenses;
• compose text notes using ( recorded )

speech to text and voice commands;
• capture photo of a book and record yourself

reading it to your child;

project
task

upload
manage
assign
note
edit

LOCATIONdev

• app name: menards

• app description: home improvement
made easy, shop departments, and more.
buy in app or find products at your clos-
est store...

• ground truth: to provide local store infor-
mation and directions from your location

• plus find a store near you;
• use the map view to locate stores near you;
• to find a location near you;
• search and discover different products from

stores near you;
• map the aisle location of any instock item

with the product locator;

order
reorder
store
shop
item

special
pickup

apps.

G. Qualitative Evaluation

We next present our qualitative evaluation on helping devel-
opers improve the interpretability of their permission explana-
tions: (1) how interpretable are the sentences recommended by
CLAP? (2) to what extent can these sentences help developers
discover new permission requirements? Because it is difficult
to answer these questions quantitatively, we inspect specific
examples of the recommended sentences and examine their
interpretability.

Column 3 of Table IV shows the sentences that CLAP
recommends for three example apps. The three apps come
from CONTACTSdev , RECORDdev , and LOCATIONdev , re-
spectively. For each app, Column 2 shows its title, description,
and the gold-standard explaining sentence. Column 4 shows
the top-voted words (based on Equation IV, Section IV).
We show a word in bold if it overlaps with words in the
recommended sentences or with the current app’s description.

From Table IV, we observe the following three characteris-
tics of the recommended sentences.

Diverse Choices of Phrasing. We observe that the recom-
mended sentences provide various rephrasing, e.g., “to send a
scheduled sms” vs. “set the time to send message”, allowing
the developer to choose from a diverse vocabulary to improve
the explanation. The reason why CLAP can support diverse

wording choices is that it removes the duplicated sentences in
the post-processing step (Section V).

Detailed Purposes. We observe that the sentences recom-
mended by CLAP usually state concrete and detailed permis-
sion purposes. In contrast, the sentences recommended by the
baselines often contain examples such as “to read contacts,”
which does not mention any specific purpose. The reason
why CLAP can recommend more detailed purposes is that
it uses the inverse document frequency (IDF) for word voting
(Section IV). The IDF helps select the most meaningful words
by demoting common and non-discriminative words [29].
Indeed, we observe that words in Column 4 are good indicators
of specific permission purposes.

Concise Sentences. We observe that the sentences recom-
mended by CLAP are usually short and concise. This result is
due to the fact that CLAP breaks long sentences into shorter
ones. Both the long sentences and the shorter sentences are
added to the candidate set (Section III-A); however, it is easier
for the shorter sentences to be highly voted, because a long
sentence tends to contain infrequent words that some of its
sub-sentences do not contain. Because the most voted words
are frequent words, the shorter sentences are more likely to
receive high votes.

We further conduct a quantitative study on the lengths of
the sentences recommended by CLAP and the baselines. We

9



compute the average and maximum lengths of the recom-
mended sentences over all the five test collections in Table I.
We find that the average length of the CLAP-recommended
sentences is less than 56% of the second shortest average
length (CLAP: 8.1; T + W: 14.6, T + K: 14.3, R + K:
15.6) while the maximum length of the CLAP-recommended
sentences is less than 36% of the second shortest maximum
length (CLAP: 31, T + W: 174, T + K: 174, R + K: 86).
Note that if a recommended sentence is as long as 174
words, it must be difficult for the developer to digest. Because
conciseness is an important aspect of interpretability [38],
sentences recommended by CLAP effectively improve the
worst case of interpretability against the baselines.

VII. LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of CLAP and
future work.

User Study. One limitation of this work is that we have not
had a systematic way to directly evaluate the interpretability
of explanation sentences. In future work, we plan to inves-
tigate more direct evaluation than our current evaluation. In
particular, we plan to measure the interpretability from an end-
user’s perspective, e.g., investigating the following research
questions: how often do explanations confuse average users?
are there any general rules that developers could follow to
improve the interpretability of permission explanations? how
to effectively explain rare permission usages?

Availability of Similar Apps. Because CLAP recommends
sentences from similar apps’ descriptions, its performance
depends on both the availability of similar apps and the quality
of similar apps’ descriptions. If an app lacks enough similar
apps, or if its similar apps are poorly explained, CLAP’s
performance will decrease. To improve CLAP’s performance
under such cases, we recommend using a larger dataset to
increase the number of well-explained candidate sentences.

Checking Apps’ Actual Behaviors. In our current work,
we measure the similarity between two apps by leveraging four
components: the two apps’ descriptions, their titles, their per-
missions, and their categories. Besides the four components,
we can further check the Android API methods invoked by
the two apps to observe whether these invoked API methods
indeed share the same permission purpose. One caveat is that
CLAP cannot be used to detect over-privileged permissions;
for such permissions, CLAP explains their usages in the same
way as for legitimate permissions.

VIII. RELATED WORK

Mining App Store Data for Requirements Engineering.
In recent years, the requirements engineering community has
shown great interest in mining data from the Google Play app
store [39], especially text data [40]–[43]. App store data serves
as a bridge between app developers and app users. On one
hand, text data from the Play store (e.g., app descriptions,
existing user reviews, and ratings) has a broad impact on
users’ decision-making process (e.g., whether to install an app,
purchase an app, or give reviews and rating). On the other

hand, such data provides important clues for guiding future
development and requirements discovery.

App description data can be used for requirements discovery
tasks such as domain analysis [44], e.g., analyzing similar
apps to discover their common and varied parts. App review
data [43], [45]–[49] contain rich user feedback information
such as their sentiments toward existing features [43], future
feature requirements [47], and bug reports [48]. Privacy policy
data can be mined to assist privacy requirements analysis [40]–
[42], [50]–[53].

Explaining Android Permission. Compared with targeted
attacks, a more prevalent security issue in Android apps is the
over-privileged problem [2], i.e., apps using more permissions
than they need. The study results by Felt et al. [3] show
that users usually have a difficult time understanding why
permissions are used. Lin et al. [4], [5] examine users’
expectations toward Android permissions. Their results reveal
general security concerns toward permission usages; however,
the security concerns can be alleviated by providing a natural
language sentence to explain the permission purpose.

Previous work has explored multiple approaches to explain
an app’s permission, e.g., using the app’s description sen-
tences [10], [24], a set of manually-annotated purposes [54],
pre-defined text templates [55], or GUI mapping [56]. How-
ever, these previous approaches all assume that the permission
explanations already exist in the app, and therefore these
approaches cannot be used to discover new requirements. Our
work fills this gap in the previous work by providing tool
supports for recommending new permission requirements.

NLP for App Security. In recent years, NLP techniques
are widely applied to various security tasks [17], [53].
CHABADA [17] uses the topic modeling technique and outlier
detection techniques to discover potential malware within each
app cluster. Slavin et al. [53] construct a knowledge hierar-
chy that joins security sensitive APIs with natural language
concepts to detect violations of textual privacy policies. As
follow-up work of WHYPER [10], AutoCog [24] uses the app
description to represent the most frequent permission purposes.

IX. CONCLUSION

In this paper, we conduct the first study on the problem of
permission requirements discovery for an Android app. When
a developer needs to explain a permission usage in the app
description, permission requirements discovery could help the
developer find potential ways to improve the interpretability
of permission explanations. We have proposed the CLAP
framework for recommending permission-explaining sentences
from similar apps, based on leveraging consensus among the
most similar apps and selecting the sentences that best match
the consensus. Our evaluation results have shown that CLAP
can recommend sentences that are relevant, concise, include
detailed purposes, and provide diverse choices of phrasing.
Acknowledgment. This work was supported in part by
NSF CNS-1513939, CNS-1408944, CCF-1409423, and CNS-
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