
A Large-Scale Empirical Study on Android
Runtime-Permission Rationale Messages

Xueqing Liu, Yue Leng
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, IL, USA

{xliu93,yueleng2}@illinois.edu

Wei Yang
Department of Computer Science

University of Texas, Dallas
Richardson, TX, USA

weiyang.utd@gmail.com

Wenyu Wang, ChengXiang Zhai, Tao Xie
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, IL, USA

{wenyu2,czhai,taoxie}@illinois.edu

Abstract—After Android 6.0 introduces the runtime-
permission system, many apps provide runtime-permission-
group rationales for the users to better understand the
permissions requested by the apps. To understand the patterns
of rationales and to what extent the rationales can improve the
users’ understanding of the purposes of requesting permission
groups, we conduct a large-scale measurement study on five
aspects of runtime rationales. We have five main findings: (1)
less than 25% apps under study provide rationales; (2) for
permission-group purposes that are difficult to understand, the
proportions of apps that provide rationales are even lower; (3)
the purposes stated in a significant proportion of rationales are
incorrect; (4) a large proportion of customized rationales do not
provide more information than the default permission-requesting
message of Android; (5) apps that provide rationales are more
likely to explain the same permission group’s purposes in their
descriptions than apps that do not provide rationales. We
further discuss important implications from these findings.

Index Terms—Android Security, Runtime Permission, Ratio-
nale, Natural Language Processing

I. INTRODUCTION

Mobile security and privacy are two challenging tasks [1]–
[7]. Recently user privacy issues gather tremendous attention
after the Facebook-Cambridge Analytica data scandal [8].
Android’s current solution for protecting the users’ private data
resources mainly relies on its sandbox mechanism and the per-
mission system. Android permissions control the users’ private
data resources, e.g., locations and contact lists. The permission
system regulates an Android app to request permissions, and
the app users must grant these permissions before the app can
get access to the users’ sensitive data.

In earlier versions of Android, permissions are requested at
the installation time. However, studies [3], [5] show that the
install-time requests cannot effectively warn the users about
potential security risks. The users are often not aware of the
fact that permissions are requested, and the users also have
poor understandings on the meanings and purposes of using
the permissions [3], [9]. It is a critical task to educate the users
by explaining permission purposes so that the users can better
understand the purposes [5], [10], [11].

Since Android 6.0 (Marshmallow), the permission system
has been replaced by a new system that requests permission

(a) Default permission-requesting
message for the permission group
STORAGE in Android.

(b) A runtime-permission-group
rationale provided by the app for
the permission group LOCATION.

Fig. 1

groups [12] at runtime. An example of runtime-permission-
group requests is in Figure 1a, where Android shows the de-
fault permission-requesting message for the permission group
STORAGE1. The runtime model has three advantages over
the old model. (1) It gives the users more warnings than
the install-time model. (2) It allows the users to control an
app’s privileges at the permission-group level. (3) It gives apps
the opportunity to embed their permission-group requests in
contexts, so that the requests are self-explanatory. For example,
in Figure 1a, a request for accessing the user’s gallery is
prompted when she is about to send a Tweet.

With the runtime-permission system, each Android app
can leverage a dialog to provide a customized message for
explaining its unique purpose of using the permission group.
In Figure 1b, we show an example of such messages from
the Facebook app for explaining the purpose of requesting
the user’s location: “Facebook uses this to make some fea-
tures work...”. Such customized messages are called runtime-
permission-group rationales. Runtime-permission-group ratio-
nales are often displayed before or after the permission-
requesting messages, or upon the starting of the app. For
the rest of this paper, for simplicity, whenever the context
refers to a runtime-permission-group rationale or a runtime-

1The permission-requesting message is the message displayed in the
permission-requesting dialog (Figure 1a). For each permission group, this
message is fixed across different apps. For example, the permission-requesting
message for STORAGE is Allow appname to access photos, media and files
on your device?978-1-5386-4235-1/18/$31.00 ©2018 IEEE

permission-group request, we use the term rationale, run-
time rationale, and permission-group rationale in short for
runtime-permission-group rationale; we use the term permis-
sion request(-ing message) in short for runtime-permission-
group request(-ing message).

There are three main reasons why runtime rationales are
useful in the new permission system. (1) Challenge in Explain-
ing Background Purposes. Although the runtime system allows
permission-group requests to be self-explanatory in contexts,
there exist cases where the permission groups are used in
the background (e.g., read phone number, SMS) [13]. As a
result, there does not exist a user-aware context for asking
such permission groups. (2) Challenge in Explaining non-
Straightforward Purposes. When the purpose of requesting
a permission group is not straightforward, such as when the
permission group is not for achieving a primary functionality,
the context itself may not be clear enough to explain the
purpose. For example, when the user is about to send a
Tweet (Figure 1a), she may not notice that the location
permission group is requested. (3) Effectiveness of Natural
Language Explanations. Prior work [5] shows that the users
find the usage of a permission better meets their expectation
when the purpose of using such permission is explained with
a natural language sentence. Furthermore, user studies [14]
on Apple’s iOS runtime-permission system also demonstrate
that displaying runtime rationales can effectively increase the
users’ approval rates.

The effectiveness of explaining permission purposes relies
on the contents of the explanation sentences [5]. Because the
rationale sentences are created by apps, the quality of such
rationales depends on how individual apps (developers) make
decisions for providing rationales. Three essential decisions
are (1) which permission group(s) the app should explain
the purposes for; (2) for each permission group, what words
should be used for explaining the permission group’s purpose;
(3) how specific the explanation should be.

In this paper, we seek to answer the following questions: (1)
what are the common decisions made by apps? (2) how are
such decisions aligned with the goal of improving the users’
understanding of permission-group purposes? To understand
the general patterns of apps’ permission-explaining behaviors,
we conduct the first large-scale empirical study on runtime
rationales. We collect an Android 6.0+ dataset consisting of
83,244 apps. From these apps, we obtain 115,558 rationale
sentences. Our study focuses on the following five research
questions.

RQ1: Overall Explanation Frequency. We investigate
the overall frequency for apps to explain permission-group
purposes with rationales. The result can help us understand
whether the developers generally acknowledge the usefulness
of runtime rationales, and whether the users are generally
warned for the usages of different permission groups.

RQ2: Explanation Frequency for non-Straightforward
vs. Straightforward Purposes. Prior work [5], [15] finds that
the users have different expectations for different permission
purposes. The Android official documentation [16] suggests

that apps provide rationales when the permission group’s
purposes are not straightforward. Therefore, we investigate
whether apps more frequently explain non-straightforward
purposes than straightforward ones. The result can help us
understand the helpfulness of rationales with the users’ under-
standings of permission-group purposes.

RQ3: Incorrect Rationales. We study the population of
rationales where the stated purpose is different from the
true purpose, i.e., the rationales are incorrect. Such study
is related to user expectation, because incorrect rationales
may confuse the users and mislead them into making wrong
security decisions.

RQ4: Rationale Specificity. How exactly do apps explain
purposes of requesting permission groups? How much in-
formation do rationales carry? Do rationales provide more
information than the permission-requesting message? Do apps
provide more specific rationales for non-straightforward pur-
poses than for straightforward purposes?

RQ5: Rationales vs. App Descriptions. Are apps that
provide rationales more likely to explain the same permission
group’s purpose in the app description than apps that do
not provide rationales? Are the behaviors of explaining a
permission group’s purposes consistent in the app description
and in rationales? Do more apps explain their permission-
group purposes in the app description than in rationales?

The rest of this paper is organized as follows. Section II
introduces background and related work, Section III describes
the data collection process. Sections IV- VIII answer RQ1-
RQ5. Sections IX- XI discuss threats to validity, implications,
and conclusion of our study.

II. BACKGROUND AND RELATED WORK

Android Permissions and the Least-Privilege Princi-
ple. A previous study [2] shows that compared with attack-
performing malware, a more prevalent problem in the Android
platform is the over-privilege issue of Android permissions:
apps often request more permissions than necessary. Felt et
al. [3] evaluate 940 apps and find that one-third of them
are over-privileged. Existing work leverages static-analysis
techniques [2], [17] and dynamic-analysis techniques [1] to
build tools for analyzing whether an app follows the least-
privilege principle. The runtime-permission-group rationales
we study are for helping the users make decisions on whether
a permission-group request is over-privileged.

User Expectation. Over time, the research literature on
Android privacy has focused on studying whether and how an
app’s permission usage meets the users’ expectation [4], [5],
[10], [18]–[23]. In particular, Lin et al. [5] find that the users’
security concern for a permission depends on whether they can
expect the permission usage. Jing et al. [15] further find that
even in the same app, the users have different expectations for
different permissions. For example, in the Skype app, the users
find the microphone permission more straightforward than the
location permission. The Android official documentation [16]
also points out this difference and suggests that app devel-

opers provide more runtime-permission-group rationales for
purposes that are not straightforward to expect.

The research literature on user expectation can be cate-
gorized into three lines of work. The first line of work is
on detecting contradictions between the code behavior and
the user interface [18], [24]. The second line of work is on
improving existing interfaces to enhance the users’ awareness
of permission usages [4], [13], [20]–[22], [25]. This line of
work includes privacy nudging [4], access control gadget [22],
and mapping between permissions and UI components [25].
In particular, Nissenbaum et al. [20] first propose the concept
of privacy as the contextual integrity; i.e., the users’ decision-
making process for privacy relies on the contexts [13], [21],
[26], [27]. The runtime-permission system incorporates the
contextual integrity by allowing apps to ask for permission
groups within the context. The third line of work is on using
natural language sentences to represent or enhance the users’
expectation regarding the permission usages [5], [10], [19],
[28]. For example, Lin et al. [5] find that the users of an
app are more comfortable with using the app when the app
provides clarifications for the permission purposes than they
do not provide such clarifications. Pandita et al. [10] further
extract permission explaining sentences from app descriptions.
Our study results presented in Section VIII show that apps
explain purposes of requesting permission groups more fre-
quently in the rationales than in the description.

Runtime Permission Groups and Runtime Rationales.
Since the launch of the runtime-permission system, another
line of work [5], [14], [29] (including our work) focuses on the
runtime-permission system and the users’ decisions on such
system. In particular, Bonne et al. [29] conduct a study similar
to the study by Lin et al. [5] under the runtime-permission
system, showing the users’ security decisions in the runtime
system also rely on their expectations of the permission usages.
The closest to our work is the study by Tan et al. [14] on the ef-
fects of runtime rationales in the iOS system. Their user-study
results show that rationales can improve the users’ approval
rates for permission requests and increase the comfortableness
for the users to use the app. Although they have not observed
a significant correlation between the rationale contents and the
approval rates, such observations may be due to the fact that
only one fake app is examined with limited user feedback. As
a result, such unrelatedness cannot be trivially generalized to
our case. Wijesekera et al. [30] redesigns the timing of runtime
prompts to reduce the satisficing and habituation issues [31]–
[34]. Both Wijesekera et al. [30] and Olejnik et al. [35]
leverage machine learning techniques to reduce user efforts
in making decisions for permission requests.

III. DATA COLLECTION
A. Crawling Apps

Since the launch of Android 6.0, many apps have migrated
to support the newer versions of Android. To obtain as many
Android 6.0+ apps as possible, we crawl apps from the
following two sources: (1) we crawl the top-500 apps in each
category from the Google Play store, obtaining 23,779 apps in
total; (2) we crawl 482,591 apps from APKPure [36], which is

another app store with copied apps (same ID, same category,
same description, etc.) from the Google Play store2. From the
two sources, we collect 494,758 apps. Among these apps, we
find 83,244 apps that (1) contain version(s) under Android
6.0+; (2) request at least 1 out of the 9 dangerous permission
groups (Table I). We use these 83,244 apps as the dataset in
this paper3.

B. Annotating Permission-group Rationales

For each app found in the preceding step, we annotate and
extract runtime rationales from the app. Same as other static
user interface texts, runtime rationales are stored in an app’s
./res/values/strings.xml file. Each line of this file
contains a rationale’s name and the content of the rationale.

The size of our dataset dictates that it is intractable to
manually annotate all the string variables. As a result, we
leverage two automatic sentence-annotating techniques: (1)
keyword matching; (2) CNN sentence classifier. The automatic
annotation is a two-step process.

Annotating Rationales for All Permission Groups. For
the first step, we design a keyword matching technique to
annotate whether a string variable contains mentions of a
permission group. More specifically, we assign a binary label
to each string variable by matching the variable’s name or
content against 18 keywords referring to permission groups,
including “permission”, “rationale”, and “toast”4. To estimate
the recall of keyword matching, we randomly sample 10
apps and inspect their string resource files. The result of our
inspection shows that such keyword matching found all the
rationales in the 10 apps.

Annotating Rationales for the 8 Dangerous Permission
Groups5. For the second step, we use the CNN sentence
classifier [38], [39] to annotate the outputs from the first step.
The annotations indicate whether each rationale describes 1
of the 9 dangerous permission groups [12]. The 9 permission
groups contain 26 permissions. These permission groups’
protection levels are dangerous and the purposes of requesting
these permission groups are relatively straightforward for the
users to understand. For each permission group, we train
a different CNN sentence classifier. We manually annotate
200∼700 rationales as the training examples for each classifier.
After applying CNN, we estimate the classifier’s false positive
rate (FP) and false negative rate (FN) by inspecting 100 output
examples in each permission group. The average FP (FN) over
the 8 permission groups is 5.1% (6.8%) and the maximum
FP (FN) is 13% (16%). In total, CNN annotates 115,558
rationales, which can be found on our project’s website [37].

2We are not able to collect all these apps from the Google Play store, due
to its anti-theft protection that limits the downloading scale.

3To the best of our knowledge, this dataset is the largest app collection on
runtime rationales; it is orders of magnitude larger than other runtime-rationale
collections in existing work [13], [14].

4The complete list of the 18 keywords can be found on our project
website [37].

5In this paper, we skip the BODY_SENSORS permission group because it
contains too few rationales.

TABLE I: The number of the used apps (the #used apps
column), the explained apps (the #explained apps column),
and the proportion of explained app in the used apps (the
%exp column). We sort the permission groups by #used
apps.

permgroup #used #explain %exp %exp
apps -ed apps (top)

STORAGE 73,031 14,668 20.2% 28.3%
LOCATION 32,648 7,088 21.6% 30.7%
PHONE 31,198 2,070 6.7% 11.0%
CONTACTS 23,492 2,607 11.1% 17.7%
CAMERA 16,557 4,235 25.6% 37.7%
MICROPHONE 9,130 2,152 23.5% 28.0%
SMS 4,589 589 12.8% 16.0%
CALENDAR 2,492 357 14.2% 22.6%
BODY_SENSORS 122 16 13.1% 15.4%
overall 83,244 19,879 23.8% 33.9%

Discussion. One caveat of our data collection process is that
the rationales in string resource files are only candidates for
runtime prompts. That is, they may not be displayed to the
users. The reason why we do not study only the actually-
displayed rationales is that such study relies on dynamic-
analysis techniques, which limit the scale of our study subjects.

IV. RQ1: OVERALL EXPLANATION FREQUENCY

In the first step of our study, we investigate the proportion of
apps that provide permission-group rationales to answer RQ1:
how often do apps provide permission-group rationales? For
each of the 9 permission groups, we count how many apps
in our dataset request the permission group; we denote this
value as #used apps. Among these apps, we further count
how many of them explain the requested permission group’s
purposes with rationales; we denote this value as #explained
apps. Given the two values, we measure the explanation
proportion of a group of apps:

Definition 1 (Explanation proportion). Given a group of
apps, its explanation proportion of a permission group is
the proportion of apps in that group to explain the purposes
of requesting the permission group, i.e., #explained apps /
#used apps. We denote the explanation proportion as %exp.

In Table I, we show the values of #used apps, #explained
apps, and %exp for each permission group. In addition, we
compute the %exp value for only the categorical top-500 apps;
we denote this value as %exp (top).

Result Analysis. From Table I we can observe three find-
ings. (1) Overall, 23.8% apps provide runtime rationale. (2)
The top-500 apps more frequently explain the purposes of
using permission groups than the overall apps do. (3) The pur-
poses of the four permission groups STORAGE, LOCATION,
CAMERA, and MICROPHONE are more frequently explained
than the other five permission groups.

Finding Summary for RQ1. 23.8% apps provide runtime
rationales for their permission-group requests. Among all the
permission groups, four groups’ purposes are explained more
often than the other permission groups. This result may imply

TABLE II: The app sets for measuring the correlation between
the usage proportion and the explanation proportion. The apps
in each set share the same purpose (the purpose column) to
use the primary permission group (the permgroup column)
with the usage proportion (the %use column).

appset permgroup purpose %use #apps
file mgr STORAGE file managing 95.4% 499

video players STORAGE store video 96.6% 1,306
photography STORAGE store photos 99.7% 3,534
maps&navi LOCATION GPS navigation 92.6% 1,541

weather LOCATION local weather 95.4% 908
travel&local LOCATION local search 87.8% 2,647

lockscreen PHONE
answer call wh

-en screen locked 82.6% 425

voip call PHONE make calls 84.9% 847
caller id PHONE caller id 92.0% 175
caller id CONTACTS caller id 86.7% 196

mail CONTACTS auto complete 77.1% 140
contacts CONTACTS contacts backup 85.8% 259
flashlight CAMERA flashlight 96.6% 298

qrscan CAMERA qr scanner 88.4% 155
camera CAMERA selfie&camera 71.4% 749
recorder MIC voice recorder 75.7% 559

video chat MIC video chat 77.0% 139
sms SMS sms 60.4% 379

calendar CALEND calendar 36.0% 300

that app developers are less familiar with the purposes of
PHONE and CONTACTS.

V. RQ2: EXPLANATION FREQUENCY FOR
NON-STRAIGHTFORWARD VS. STRAIGHTFORWARD

PURPOSES

In the second part of our study, we seek to quantita-
tively answer RQ2: do apps provide more rationales for non-
straightforward permission-group purposes than for straight-
forward permission-group purposes?

It is challenging to precisely measure the straightforward-
ness for understanding the purpose of requesting a permission
group. The reason for such challenge is that such straight-
forwardness relies on each user’s existing knowledge, which
varies from user to user. Therefore, we propose to approximate
the straightforwardness by measuring the usage proportion of
a permission group in a set of apps:

Definition 2 (Usage proportion). Given a set of apps, its usage
proportion (denoted as %use) of a permission group is the
proportion of the apps (in this set) that request the permission
group.

Our approximation is based on the observation that if a
permission group is frequently used by a set of apps, the
permission-group purpose in that app set is often also straight-
forward to understand. For example, in a camera app, the
users are more likely to understand the purpose of the camera
permission group than the location permission group [16];
meanwhile, our statistics show that camera apps also more
frequently request the camera permission group (71.4%) than
the location permission group (27.0%).

S
T
O

R
A

G
E

LO
C

A
T
IO

N

P
H

O
N

E

C
O

N
T
A

C
T

C
A

M
E
R

A

M
IC

R
O

P
H

S
M

S

C
A

LE
N

D
A

o
ff

-D
ia

g

STORAGE

LOCATION

PHONE

CONTACT

CAMERA

MICROPH

SMS

CALENDA

off-Diag

0.98 0.18 0.19 0.17 0.39 0.10 0.02 0.01 0.29

0.77 0.91 0.37 0.31 0.23 0.07 0.07 0.04 0.39

0.76 0.29 0.84 0.55 0.27 0.30 0.35 0.02 0.48

0.77 0.35 0.67 0.83 0.19 0.16 0.39 0.06 0.49

0.75 0.23 0.23 0.18 0.80 0.21 0.05 0.01 0.35

0.88 0.29 0.53 0.42 0.26 0.76 0.15 0.03 0.47

0.71 0.33 0.63 0.62 0.20 0.10 0.60 0.03 0.46

0.78 0.34 0.28 0.35 0.14 0.04 0.04 0.36 0.33

0.78 0.22 0.31 0.28 0.30 0.11 0.08 0.03 0.30
0.0

0.2

0.4

0.6

0.8

1.0

S
T
O

R
A

G
E

LO
C

A
T
IO

N

P
H

O
N

E

C
O

N
T
A

C
T

C
A

M
E
R

A

M
IC

R
O

P
H

S
M

S

C
A

LE
N

D
A

o
ff

-D
ia

g

STORAGE

LOCATION

PHONE

CONTACT

CAMERA

MICROPH

SMS

CALENDA

off-Diag

0.32 0.25 0.07 0.14 0.22 0.31 0.22 0.14 0.24

0.25 0.32 0.09 0.12 0.25 0.20 0.12 0.14 0.21

0.18 0.24 0.24 0.20 0.15 0.18 0.08 0.07 0.19

0.26 0.20 0.18 0.26 0.23 0.19 0.08 0.29 0.24

0.31 0.38 0.06 0.10 0.28 0.33 0.00 0.09 0.22

0.32 0.29 0.19 0.19 0.25 0.18 0.15 0.17 0.25

0.16 0.08 0.17 0.21 0.09 0.15 0.17 0.00 0.15

0.18 0.19 0.13 0.14 0.19 0.18 0.08 0.22 0.19

0.25 0.24 0.10 0.15 0.23 0.24 0.11 0.15 0.21
0.00

0.06

0.12

0.18

0.24

0.30

Fig. 2: The usage proportion (top) and the explanation pro-
portion (bottom) of the app sets in Table II. Each element at
(Q, P) shows the proportion of apps in set Q to use/explain
the purpose of permission group P .

To answer RQ2, we first introduce the definitions of the
primary permission group.

Definition 3 (Primary Permission Group). Given a set of apps
that share the same primary functionality, if any app relies on
(does not rely on) requesting a permission group to achieve
that primary functionality, we say that this permission group
is a primary (non-primary) permission group to this app set,
and this app set is a primary (non-primary) app set to this
permission group. An example of such primary (non-primary)
pairs is GPS navigation apps and LOCATION (CAMERA)
permission group.

To study the relation between the straightforwardness of
permission-group purposes and explanation proportions, we
leverage the following three-step process. (1) For each per-
mission group P , we use keyword matching to identify 1∼3
app sets such that P is a primary permission group to these app
sets. (2) For each permission group Q, we merge its primary
app sets to obtain a larger primary app set for Q. (3) For

TABLE III: The Pearson correlation tests of each permission
group, between the usage proportion and the explanation
proportion on the 35 Play-store app sets.

STORAGE LOC PHONE CONTACT CAMERA MIC

r p r p r p r p r p r p
.4 8e-3 .6 1e-3 .5 6e-2 .8 1e-3 -.5 2e-2 .2 .5

each permission group P and the merged app sets for each
permission group Q, we compute the proportion for app set
Q to use/explain P , obtaining two 8 × 8 matrices. We show
all the app sets in Table II, and the two matrices in Figure 2.
In each matrix in Figure 2, each row corresponds to a merged
app set Q and each column corresponds to a permission group
P . For each row/column, we also compute the average over its
off-diagonal elements and show these values in an additional
column/row named off-Diag. That is, elements in off-Diag
show the average over non-primary permission groups/app
sets.

Why Using Primary Permission Groups? By introducing
primary permission groups, we are able to identify permission-
group purposes that are clearly straightforward (Table II), so
that the boundaries between straightforward purposes and non-
straightforward purposes are relatively well defined. We can
observe such boundaries from the usage proportion matrix
(Figure 2, top).

Result Analysis. We can observe the following findings
from the explanation matrix in Figure 2 (bottom). (1) By
comparing every diagonal element with its two off-Diag coun-
terparts, we can observe that the diagonal elements are usually
larger, indicating that straightforward permission-group pur-
poses are explained more frequently than non-straightforward
ones. On the other hand, there exist a few exceptional cases
in LOCATION, MICROPHONE, SMS, and CALENDAR where
at least one off-diagonal element is larger than the diagonal
element, indicating that non-straightforward permission-group
purposes are explained more frequently in these cases. (2)
By comparing the elements in the off-Diag row, we find that
the permission groups for which non-straightforward purposes
are most explained are STORAGE, LOCATION, CAMERA,
and MICROPHONE. Such result is consistent with the overall
explanation proportions in Table I.

Measuring Correlation Over All Apps. Because the app
sets in Table II cover only a subset of apps, we further
design the second measurement study to capture all apps in
our dataset. The second study includes the following two-step
process. (1) Based on the app categories in the Google Play
store, we partition all apps into 35 sets. After the partition, the
two permission groups SMS and CALENDAR contain too few
rationales in each app set, and therefore we discard these two
permission groups. (2) For each permission group, we compute
all its usage proportions and explanation proportions in the
35 app sets, and test the Pearson correlation coefficient [40]
between the usage proportions and explanation proportions.
In Table III, we show the results of the Pearson tests. We can
observe that 4 out of the 6 tests show significantly positive
correlation, i.e., straightforward purposes are usually more

frequently explained. Such results are generally consistent with
the results in Figure 2.

Finding Summary for RQ2. Overall, apps have not
provided more runtime rationales for non-straightforward
permission-group purposes than for straightforward ones ex-
cept for a few cases. This result implies that the majority
of apps have not followed the suggestion from the Android
official documentation [16] to provide rationales for non-
straightforward permission-group purposes.

VI. RQ3: INCORRECT RATIONALES

In the third part of our study, we investigate the correctness
of permission-group rationales. We seek to answer RQ3: does
there exist a significant proportion of runtime rationales where
the stated purposes do not match the true purposes?

It is challenging to derive an app’s true purpose for request-
ing a permission group. However, we can coarsely differentiate
between purposes by checking the permissions under a per-
mission group. Among the 9 permission groups in Android
6.0 and higher versions, 6 permission groups each contain
more than one permission [12]. For example, the PHONE
permission group controls the access to phone-call-related sen-
sitive resources, and this permission group contains 9 phone-
call-related permissions: CALL_PHONE, READ_CALL_LOG,
READ_PHONE_STATE, etc. By examining whether the app
requests READ_CALL_LOG or READ_PHONE_STATE, we
can differentiate between the purposes of reading the user’s
call logs and accessing the user’s phone number.

In order to easily identify the mismatches between the
stated purpose and the true purpose, we study 3 permission
groups consisting of relatively diverse permissions: PHONE,
CONTACTS, and LOCATION. In particular, each of the
3 groups contains 1 permission such that 90% apps re-
questing the group have requested that permission (whereas
other permissions in the same group are requested less fre-
quently); therefore, we name such permission a basic per-
mission. The basic permissions of PHONE, CONTACTS, and
LOCATION are READ_PHONE_STATE, GET_ACCOUNTS,
and ACCESS_COARSE_LOCATION, respectively.

Definition 4 (Apps with Incorrect Rationales). We identify
two cases for an app to contain incorrect rationale(s): (1) all
the rationales state that the app requests only the basic per-
mission, but in fact, the app has requested other permissions
(in the same permission group); (2) the app requests only the
basic permission, but it contains some rationales stating that
it has requested other permissions (in the same permission
group).

How many apps does each of the two incorrect cases
contains? Both cases can mislead the user to make wrong
decisions. For case (1), the user may grant the permission-
group request with the belief that she has granted only the
basic permission, but in fact she has granted other permissions.
For case (2), the user may deny the permission-group request,
because the stated purpose of such permission group seems to
be unrelated to the app’s functionality, e.g., when a music

TABLE IV: The upper table shows the criteria for annotat-
ing the basic permission and other permissions in the same
permission group. The lower table shows the estimated lower
bounds on the numbers of apps containing incorrectly stated
rationales.

CONTACTS PHONE LOCATION

annotate
criterion

basic per
-mission
class (a)

google
account/
sign in/

email add
dress

pause inc
oming call/
imei/ ident

ity/ number/
cellular

coarse loc
/area/region

/approximate
/beacon
/country

other per-
missions
class (b)

contacts/
friends/

phonebook

make call/
call phone/

call logs

driving/
fine loc/

coordinate

incorrect
apps

case (1) #err %err #err %err #err %err
93 4.6 139 11.3 9 0.1

case (2) #err %err #err %err #err %err
76 13.2 37 4.2 3 0.6

player app requests the READ_PHONE_STATE permission
only to pause the music when receiving phone calls, the
rationale can raise the user’s security concern by stating that
the music app needs to make a phone call. After the user denies
the phone permission group, the app also loses the access to
pausing the music.

To study the populations of the two preceding incorrect
cases, we again leverage the aforementioned CNN sentence
classifier [38]. We classify each runtime rationale into one
of the following three classes: (a) the rationale states the
purpose of requesting a basic permission; (b) the rationale
states the purpose of requesting a permission other than
the basic permission; (c) neither (a) nor (b). For each of
the three permission groups, we manually annotate 600∼900
rationales as the training data. After we obtain the predicted
labels, we manually judge the resulting rationales that are
predicted as (a) or (b) to make sure that there do not exist
false positive annotations for incorrect case (1) or (2). In
Table IV, we show the lower-bound estimations (#err and
%err) of the two incorrect cases’ populations. We also show
the detailed criteria of our annotations for (a) and (b). The
list of incorrect rationales and their apps can be found on our
project website [37].

Result Analysis. From Table IV we can observe that there
exist a significant proportion of incorrectly stated runtime
rationales, especially in the incorrect case (1) of the phone
permission group and the incorrect case (2) of the contacts
permission group. In contrast, there exist fewer incorrect cases
in the location permission group. The reason for the location
permission group to contain fewer incorrect cases may be that
the majority of apps claim only the usage of location, without
specifying whether the requested location is fine or coarse. The
contacts and phone permission groups contain more diverse
purposes than the location group does, and our study results
show that a significant proportion of apps requesting the two
groups state the wrong purposes. For example, a significant
number of FM radio apps state in the rationales that these
apps only need to use the phone state to pause the radio
when receiving incoming calls; however, these apps have also

st
or

ag
e

lo
ca

te

co
nt

ac
t

ph
on

e

ca
m

m
ic

0

0.2

0.4

0.6

0.8

1

primary
permission
group

non-primary
permission
group

overall

Fig. 3: The proportions of non-redundant rationales.

requested the CALL_PHONE permission, indicating that if the
user grants the permission group, these apps also gain the
access to making phone calls within the app.

Finding Summary for RQ3. There exist a significant
proportion of incorrect runtime rationales for the CONTACTS
and the PHONE permission groups. This result implies that
apps may have confused the users by stating the incorrect
permission-group purposes for PHONE and CONTACTS.

VII. RQ4: RATIONALE SPECIFICITY

In the fourth part of our study, we look into the infor-
mativeness of runtime rationales. In particular, we seek to
answer RQ4: do rationales (e.g., the rationale in Figure 1b)
provide more specific information than the system-provided
permission-requesting messages (e.g., the message in Fig-
ure 1a)?

Definition 5 (Redundant Rationales). If a runtime rationale
states only the fact that the app is requesting the permission
group, i.e., it does not provide more information than the
permission-requesting message, we say that the rationale is
redundant, and otherwise non-redundant.

Among all the runtime rationales, how many are non-
redundant ones? How much do the proportions of non-
redundant rationales in each permission group vary across
permission groups?

To study the population of non-redundant rationales, we
leverage the named entity tagging (NER) technique [41].
The reason for us to leverage the NER technique is our
observation that non-redundant rationales usually use some
words to state the more specific purposes than the fact of using
the permission group. Moreover, these purpose-stating words
usually appear in textual patterns. As a result, we can leverage
such textual patterns to detect non-redundant rationales. For
example, in the following rationale, the words tagged with
“S” explain the specific purpose of using the permission group
PHONE, and the words tagged with O are other words:
“this O radio O application O would O like O to O use O
the O phone O permission O to S pause S the S radio S
when S receiving S incoming S calls S”. We train a different
NER tagger for each of the top-6 permission groups in
Table I6. For each permission group, we manually annotate

6We skip SMS and CALENDAR, because they both contain too few rationales
for estimating the proportions of non-redundant rationales.

200∼1,000 training examples. To evaluate the performance
of our NER tagger, we randomly sample 100 rationales from
NER’s output for each permission group, and manually judge
these sampled rationales. Our judgment results show that
NER’s prediction accuracy ranges from 85% to 94%. The lists
of redundant and non-redundant rationales tagged by NER
can be found on our project website [37]. Next, we obtain
the proportions of non-redundant rationales in each permission
group. We plot these proportions in Figure 3.

Result Analysis. We can observe three findings from Fig-
ure 3 and additional experiments. (1) The proportions of
redundant runtime rationales range from 23% to 77%. (2)
While the two permission groups PHONE and CONTACTS
have the lowest explanation proportions (Figure 2), they have
the highest non-redundant proportions. The reason why most
phone and contacts rationales are non-redundant is that they
usually specify whether the permission group is used for the
basic permission or other permissions. (3) We also study the
proportions of non-redundant rationales in the app sets defined
in Table II, but we have not observed a significant correlation
between the usage proportions and the non-redundant propor-
tions.

Finding Summary for RQ4. A large proportion of the
runtime rationales have not provided more specific information
than the permission-requesting messages. The rationales in
PHONE and CONTACTS are most likely to explain more
specific purposes than the permission-requesting messages.
This result implies that a large proportion of the rationales are
either unnecessary or should be more specifically explained.

VIII. RQ5: RATIONALES VS. APP DESCRIPTIONS

In the fifth part of our study, we look into the correlation
between the runtime rationales and the app description. We
seek to answer RQ5: how does explaining a permission group’s
purposes in the runtime rationales relate to explaining the
same permission group’s purposes in the app description? Are
apps that provide rationales more likely to explain the same
permission group’s purposes in the app description than apps
that do not provide rationales?

To identify apps that explain the permission-group purposes
in the description, we leverage the WHYPER tool and the
keyword matching technique [10]. WHYPER is a state-of-the-
art tool for identifying permission-explaining sentences. We
apply WHYPER on the CONTACTS and the MICROPHONE
permission groups. Because WHYPER [42] does not provide
the entire pipeline solution for other frequent permission
groups, we use the keyword matching technique to match
sentences for another permission group LOCATION. Prior
work [11] also leverages keyword matching for efficient pro-
cessing. We show the results in Table V.

Result Analysis. From Table V, we can observe two
findings. (1) In two out of the three cases, the correlations
are significantly positive. Therefore, an app that provides
runtime rationales is also more likely to explain the same
permission group’s purpose in the description. (2) There exist

TABLE V: The number of apps that explain a permission
group’s purposes in the app description (the #apps descript
column), in the rationales (the #apps rationales column), in
both (the #apps both column), and the Pearson correlation
coefficients between whether an app explains a permission
group’s purpose in the description vs. rationales (the Pearson
column).

#apps #apps #apps Pearsondescript rationales both
LOCATION 5,747 7,088 2,028 (0.15, 1.86e-168)
CONTACTS 1,542 2,607 394 (0.12, 1.5e-78)
MICROPH 957 2,152 245 (0.02, 0.12)

more apps using runtime rationales to explain the permission-
group purposes than apps that use the descriptions.

Finding Summary for RQ5. The explanation behaviors in
the description and in the runtime rationales are often posi-
tively correlated. Moreover, more apps use runtime rationales
to explain purposes of requesting permission groups than using
the descriptions. This result implies that apps’ behaviors of
explaining permission-group purposes are generally consistent
across the descriptions and the rationales.

IX. THREATS TO VALIDITY

The threats to external validity primarily include the degree
to which the studied Android apps or their runtime rationales
are representative of true practice. We collect the Android apps
from two major sources, one of which is the Google Play
store, the most popular Android app store. Such threats could
be reduced by more studies on more Android app stores in
future work. The threats to internal validity are instrumentation
effects that can bias our results. Faults in the used third-
party tools or libraries might cause such effects. To reduce
these threats, we manually double check the results on dozens
of Android apps under analysis. Human errors during the
inspection of data annotations might also cause such effects.
To reduce these threats, at least two authors of this paper
independently conduct the inspection, and then compare the
inspection results and discuss to reach a consensus if there is
any result discrepancy.

X. IMPLICATIONS

In this paper, we attain multiple findings for Android run-
time rationales. These findings imply that developers may be
less familiar with the purposes of the PHONE and CONTACTS
permission groups and some rationales in these groups may
be misleading (RQ1 and RQ3); the majority of apps have
not followed the suggestion for explaining non-straightforward
purposes [16] (RQ2); a large proportion of rationales may
either be unnecessary or need further details (RQ4); and
apps’ explanation behaviors are generally consistent across the
descriptions and the rationales (RQ5). Such findings suggest
that the rationales in existing apps may not be optimized for
the goal of improving the users’ understanding of permission-
group purposes. Based on these implications, we propose two
suggestions on the system design of the Android platform.

Official Guidelines or Recommender Systems. It is desir-
able to offer an official guideline or a recommender system for
suggesting which permission-group purposes to explain [11],
e.g., on the official Android documentation or embedded
in the IDE. For example, such recommender system can
provide a list of functionalities, so that the developer can
select which functionalities are used by the app. Based on
the developer’s selections, the system scans the permission-
group requests by the app, and lets the developer know which
permission group(s)’s purposes may look non-straightforward
to the users. In addition, the system can suggest rationales for
the developers to adapt or to adopt [11].

Controls over Permissions for the Users. When a per-
mission group contains multiple permissions, such design
increases the challenges and errors in explaining the purposes
of requesting such permission group. It is interesting to study
whether a user actually knows which permission she has
granted, e.g., does a weather app use her precise location or
not? One potential approach to improve the users’ understand-
ing of permission-group purposes is to further scale down
the permission-control granularity from the user’s end. For
example, the “permission setting” in the Android system can
display a list showing whether each of the user’s permissions
(instead of permission groups) has been granted; and doing
so also gives the users the right to revoke each permission
individually.

XI. CONCLUSION

In this paper, we have conducted the first large-scale em-
pirical study on runtime-permission-group rationales. We have
leveraged statistical analysis for producing five new findings.
(1) Less than one-fourth of the apps provide rationales; the
purposes of using PHONE and CONTACTS are the least
explained. (2) In most cases, apps explain straightforward
permission-group purposes more than non-straightforward
ones. (3) Two permission groups PHONE and CONTACTS
contain significant proportions of incorrect rationales. (4) A
large proportion of the rationales do not provide more infor-
mation than the permission-requesting messages. (5) Apps’
explanation behaviors in the rationales and in the descriptions
are positively correlated. Our findings indicate that developers
may need further guidance on which permission groups to
explain the purposes and how to explain the purposes. It
may also be helpful to grant the users controls over each
permission.

Our study focuses on analyzing natural language rationales.
Besides the rationales, other UI components (e.g., layout,
images/icons, font size) can also affect the users’ decision
making. In future work, we plan to study the effects of
runtime-permission-group requests when considering these
factors, and study ways to encourage the developers to provide
higher-quality warnings than the current ones.
Acknowledgment. We thank the anonymous reviewers and
Xiaofeng Wang for their useful suggestions. This work was
supported in part by NSF CNS-1513939, CNS-1408944, CCF-
1409423, and CNS-1564274.

REFERENCES

[1] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. D. McDaniel, and A. N. Sheth, “TaintDroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” in
Proceedings of the USENIX Conference on Operating Systems Design
and Implementation. ACM, 2014, pp. 393–407.

[2] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the ACM Conference on
Computer and Communications security. ACM, 2011, pp. 627–638.

[3] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,”
in Proceedings of the Symposium on Usable Privacy and Security.
USENIX Association, 2012, pp. 3:1–3:14.

[4] H. Almuhimedi, F. Schaub, N. M. Sadeh, I. Adjerid, A. Acquisti,
J. Gluck, L. F. Cranor, and Y. Agarwal, “Your location has been
shared 5,398 times! A field study on mobile app privacy nudging,”
in Proceedings of the Annual ACM Conference on Human Factors in
Computing Systems. ACM, 2015, pp. 787–796.

[5] J. Lin, N. M. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: Understanding users’ mental models of
mobile app privacy through crowdsourcing,” in Proceedings of the ACM
Conference on Ubiquitous Computing. ACM, 2012, pp. 501–510.

[6] J. Lin, B. Liu, N. M. Sadeh, and J. I. Hong, “Modeling users’ mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Proceedings of the Symposium on Usable Privacy and Security.
USENIX Association, 2014, pp. 199–212.

[7] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppCon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in Proceedings of the International Conference on Software
Engineering. IEEE Computer Society, 2015, pp. 303–313.

[8] “Facebook and cambridge analytical data breach,” https://en.wikipedia.
org/wiki/Facebook and Cambridge Analytica data breach, accessed:
2018-07-27.

[9] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. M. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing applications
on an Android smartphone,” in Financial Cryptography Workshops.
Springer, 2012, pp. 68–79.

[10] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
automating risk assessment of mobile applications,” in Proceedings of
the USENIX Security Symposium. USENIX Association, 2013, pp.
527–542.

[11] X. Liu, Y. Leng, W. Yang, C. Zhai, and T. Xie, “Mining Android app
descriptions for permission requirements recommendation,” in Proceed-
ings of the International Requirements Engineering Conference. IEEE
Computer Society, 2018.

[12] “Android permission groups,” https://developer.android.com/guide/
topics/permissions/requesting.html\#perm-groups, 2018, accessed:
2018-07-27.

[13] K. K. Micinski, D. Votipka, R. Stevens, N. Kofinas, M. L. Mazurek,
and J. S. Foster, “User interactions and permission use on Android,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2017, pp. 362–373.

[14] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thompson,
S. Egelman, and D. A. Wagner, “The effect of developer-specified
explanations for permission requests on smartphone user behavior,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2014, pp. 91–100.

[15] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “RiskMon: Continuous and
automated risk assessment of mobile applications,” in Proceedings of
the ACM Conference on Data and Application Security and Privacy.
ACM, 2014, pp. 99–110.

[16] “Should show request permission rationale API,” https://developer.
android.com/reference/android/support/v4/app/ActivityCompat#
shouldShowRequestPermissionRationale(android.app.Activity,java.
lang.String), 2018, accessed: 2018-07-27.

[17] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android permission specification,” in Proceedings of the ACM
Conference on Computer and Communications Security. ACM, 2012,
pp. 217–228.

[18] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: Detecting
stealthy behaviors in Android applications by user interface and program
behavior contradiction,” in Proceedings of the International Conference
on Software Engineering. ACM, 2014, pp. 1036–1046.

[19] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the International Conference
on Software Engineering. ACM, 2014, pp. 1025–1035.

[20] H. Nissenbaum, “Privacy as contextual integrity.” Washington Univer-
sity School of Law, 2004, pp. 101–139.

[21] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. A. Wagner,
and K. Beznosov, “Android permissions remystified: A field study on
contextual integrity,” in Proceedings of the USENIX Security Symposium.
USENIX Association, 2015, pp. 499–514.

[22] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in Proceedings of the IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2012, pp. 224–238.

[23] P. G. Kelley, L. F. Cranor, and N. M. Sadeh, “Privacy as part of the app
decision-making process,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2013, pp. 3393–3402.

[24] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie,
“UiRef: Analysis of sensitive user inputs in Android applications,” in
Proceedings of the ACM Conference on Security and Privacy in Wireless
and Mobile Networks. ACM, 2017, pp. 23–34.

[25] Y. Li, Y. Guo, and X. Chen, “PERUIM: Understanding mobile applica-
tion privacy with permission-UI mapping,” in Proceedings of the ACM
Conference on Ubiquitous Computing. ACM, 2016, pp. 682–693.

[26] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. R.
Magrino, E. X. Wu, M. Rinard, and D. X. Song, “Contextual policy
enforcement in Android applications with permission event graphs,” in
Proceedings of the Network & Distributed System Security Symposium.
The Internet Society, 2013.

[27] D. Votipka, K. Micinski, S. M. Rabin, T. Gilray, M. M. Mazurek, and
J. S. Foster, “User comfort with Android background resource accesses
in different contexts,” in Proceedings of the Symposium on Usable
Privacy and Security. USENIX Association, 2018.

[28] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Au-
toCog: Measuring the description-to-permission fidelity in Android
applications,” in Proceedings of the ACM Conference on Computer and
Communications Security. ACM, 2014, pp. 1354–1365.

[29] B. Bonné, S. T. Peddinti, I. Bilogrevic, and N. Taft, “Exploring decision-
making with Android’s runtime permission dialogs using in-context
surveys,” in Proceedings of the Symposium on Usable Privacy and
Security. USENIX Association, 2017, pp. 195–210.

[30] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wagner,
and K. Beznosov, “The feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences,” in Proceedings of the
IEEE Symposium on Security and Privacy. IEEE Computer Society,
2017, pp. 1077–1093.

[31] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer, “Here’s my
cert, so trust me, maybe?: Understanding TLS errors on the web,” in
Proceedings of the International Conference on World Wide Web. ACM,
2013, pp. 59–70.

[32] M. S. Wogalter, V. C. Conzola, and T. L. Smith-Jackson, “Research-
based guidelines for warning design and evaluation,” vol. 33, no. 3.
Elsevier, 2002, pp. 219–230.

[33] M. Harbach, S. Fahl, P. Yakovleva, and M. Smith, “Sorry, I don’t
get it: An analysis of warning message texts,” in Proceedings of the
International Conference on Financial Cryptography and Data Security.
Springer, 2013, pp. 94–111.

[34] F. Schaub, R. Balebako, A. L. Durity, and L. F. Cranor, “A design
space for effective privacy notices,” in Proceedings of the Symposium On
Usable Privacy and Security. USENIX Association, 2015, pp. 1–17.

[35] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and J.-
P. Hubaux, “SmarPer: Context-aware and automatic runtime-permissions
for mobile devices,” in Proceedings of the IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2017, pp. 1058–1076.

[36] “APKPure website,” https://www.apkpure.com, 2018, accessed: 2018-
07-27.

[37] “Runtime permission rationale project website,” https://sites.google.com/
view/runtimepermissionproject/, accessed: 2018-07-27.

[38] “A tensorflow implementation of CNN text classification,” https://github.
com/dennybritz/cnn-text-classification-tf, 2018, accessed: 2018-07-27.

[39] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2014,
pp. 1746–1751.

[40] “Pearson correlation coefficient,” https://en.wikipedia.org/wiki/Pearson
correlation coefficient, 2018, accessed: 2018-07-27.

[41] J. R. Finkel, T. Grenager, and C. D. Manning, “Incorporating non-local
information into information extraction systems by Gibbs sampling,” in
Proceedings of the Annual Meeting on Association for Computational
Linguistics. Association for Computational Linguistics, 2005, pp. 363–

370.
[42] “WHYPER tool,” https://github.com/rahulpandita/Whyper, accessed:

2018-07-27.

