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CS 589 Fall 2020 

Text Mining and Information Retrieval

Instructor: Susan Liu 
TA: Huihui Liu

Stevens Institute of Technology



Welcome to CS589
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• Instructor: Susan (Xueqing) Liu 
• Email: xliu127@stevens.edu 
• CAs:  

• Huihui Liu hliu79@stevens.edu

mailto:xliu127@stevens.edu
mailto:hliu79@stevens.edu


Who am I?
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• Assistant professor joined Jan 2020 
• PhD@UIUC 2019 
• My research: 

• Helping users (especially software developers) to more quickly 
search for information

software 
engineering, security

ML Text mining/IR

my research



What is CS589 about?
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• Text Mining 
• The study of extracting high quality information from raw texts 

• Information retrieval 
• The study of retrieving relevant information/resources/knowledge to an 

information need



Information Retrieval Techniques

“Because the systems that are accessible today are so easy to use, it is 
tempting to think the technology behind them is similarly straightforward to 
build. This review has shown that the route to creating successful IR 
systems required much innovation and thought over a long period of time. “   
         
— The history of Information Retrieval Research, Mark Sanderson and 
Bruce Croft 
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Information Retrieval Techniques

How does Google return 
results so quickly?

How does Google 
know cs 589 refers 
to a course?  
How does Google 
know stevens = SIT?



Information Retrieval Techniques
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Getting enough 
coverage of users’ 
information need

Making sure the results 
are returned to users fast

Query 
understanding, 
personalization, 
results 
diversification, result 
page optimization, 
etc. 



A Brief History of IR
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300 BC

Callimachus: the first library catalog

Punch cards, searching at 600 cards/min

1950s

1958 Cranfield evaluation methodology; 
word-based indexing

building IR systems on computers; 
relevance feedback

1960s

1970s

TREC; learning to rank; latent 
semantic indexing

1980s

TF-IDF; probability ranking principle

1990 - 
now

web search; supporting natural 
language queries; 



Information need
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information need 
“An individual or group's desire to locate and obtain 
information to satisfy a need”, e.g., question answering, 
program repair, route planning

query 
A (short) natural language representation of users’ information 
need 



The Boolean retrieval system
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The Boolean retrieval system
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• e.g., SELECT * FROM table_computer WHERE price < $500 AND brand = 
“Dell” 

• Primary commercial retrieval system for 3 decades 
• Many systems today still use the boolean retrieval system, i.e., faceted search 

• Library catalog, eCommerce search, etc. 

• Advantage: Returns exactly what you want 

• Disadvantage:  
• can only specify queries based on the pre-defined categories 
• two few / two many queries



The Boolean retrieval system

12The user may specify a condition that does not exist 



The Cranfield experiment (1958)
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• Imagine you need to help users search for literatures in a digital library, how 
would you design such a system?

computer science

artificial intelligence bioinformatics

query = “subject = AI & subject = 
bioinformatics”

system 1: the Boolean retrieval system



The Cranfield experiment (1958)
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• Imagine you need to help users search for literatures in a digital library, how 
would you design such a system?

system 2: indexing documents by lists of words

query = “artificial intelligence”

artificial

bags of words representation



The Cranfield experiment (1958)
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system 1

system 2

compare

Boolean retrieval system < word indexing system



Word indexing: vector-space model
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• Represent each document/
query as a vector 

• The similarity = cosine score 
between the vectors



Term frequency
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• d1 = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0] 
• d2 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0] 
• d3 = [0, 0, 0, 1, 0, 0, 0, 1, 1, 1]

• query = “business intelligence”  
• q = [0, 0, 0, 1, 0, 0, 0, 0, 0, 1]

artificial

tf(w, d) = count(w, d)

di = [count(w1, di), · · · , count(wn, di)]



Vector space model
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• d1 = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0] 
• d2 = [1, 1, 0, 0, 0, 1, 1, 0, 0, 0] 
• d3 = [0, 0, 0, 1, 0, 0, 0, 1, 1, 1]

• To answer the query: 
• “business intelligence”  

• q = [0, 0, 0, 1, 0, 0, 0, 0, 0, 1]

artificial

score(q, d) =
q · d

kqk · kdk



TF-only representations is inaccurate
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• Documents are dominated by words such as “the” “a” 

• These words do not carry any meanings, nor do they discriminate between 
documents

• q = “the artificial intelligence book”

• d1 = “the cat, the doc, and the book” 
• d2 = “business intelligence”

score(q, d1) = 0.8164

score(q, d2) = 0.3535

)score(q, d1) > score(q, d2)



Zipf’s law distribution of words
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Stop words
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• Documents are dominated by words such as “the” “a” 

• These words do not discriminate between documents



Desiderata for a good ranking function
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• q = “artificial intelligence”

• d1 = ““Artificial intelligence was 
founded as an academic discipline in 
1955, and in the years since has 
experienced several waves of optimism” 

• If a word appears everywhere, it should be penalized 

• If a word appears in the same document multiple times, it’s importance should 
not grow linearly

• d2 = ““Artificial intelligence was 
founded as an academic 
discipline in 1955, artificial 
intelligence” 

d2 is not twice more relevant than d1



Inverse-document frequency
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• Inverse-document frequency: penalizing a word’s TF based on its 
document frequency

IDF (w) = logN/df(w)

q(d, w) = TF (d, w)⇥ IDF (w)

• q = “the artificial intelligence book”

• d1 = “the cat, the doc, and the book” 
• d2 = “business intelligence”

score(q, d1) = 0.8164 ! 0.2041

score(q, d2) = 0.3535 ! 0.3535

)score(q, d1) < score(q, d2)

TF-IDF weighting



Term frequency reweighing
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• Term frequency reweighing: penalizing a word’s TF based on the TF itself 

• If a word appears in the same document multiple times, it’s importance should 
not grow linearly

tf(w, d) =

(
1 + log count(w, d) count(w, d) > 0

0 o.w.

tf(w, d) = ↵+ (1� ↵)
count(w, d)

maxvcount(v, d)
Max TF 
normalization

Log scale 
normalization



Term-frequency reweighing
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• Logarithmic normalization

tf(w, d) =

(
1 + log count(w, d) count(w, d) > 0

0 o.w.
Log scale 
normalization

• q = “the artificial intelligence book”

• d1 = “the cat, the doc, and the book” 
• d2 = “business intelligence”

score(q, d1) = 0.8164 ! 0.7618

score(q, d1) = 0.3535 ! 0.3535



Document length pivoting
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• Another problem with TF-IDF weighting 
• Longer documents cover more topics, so the query may match a small 

subset of the vocabulary 
• Longer documents need to be considered differently

d1 = “artificial 
intelligence book” 

q = “artificial intelligence” 

d2 = “Artificial intelligence was 
founded as an academic discipline in 
1955, and in the years since has 
experienced several waves of optimism “

score(q, d1) > score(q, d2)



Document length pivoting
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• For each query q and each document d, compute their relevance score 
score(q, d) 

• Manually evaluate the relevance between q and d

relevance score

relevance judgment@l =
count(length = l, rel = 1)

count(length = l)



Document length pivoting
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• Rotate the relevance score curve, such that it most closely align with the 
relevance judgement curve

pivoted normalization = (1.0–slope)⇥ pivot+ slope⇥ oldnormalization

y = x

pivot = pivot⇥ slope+ intercept



Document length pivoting
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• Rotate the relevance score curve, such that it most closely align with the 
relevance judgement curve

the similar formulation will be frequently used later



More on retrieval model design heuristics

30

• Axiomatic thinking in information retrieval [Fang et al., SIGIR 2004]



IR != web search

• The other side of information retrieval techniques 
• Recommender systems (users who bought this also bought…) 
• Online advertising 

31



IR != web search
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• Reasoning-based question answering systems



What about text mining?
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Database
Text Mining

IR
web search & mining

Data mining
AI/ML

NLP

document 
classification

document 
clustering information 

extraction

sentiment analysistext summarization



Syllabus

• Vector space model, TF-IDF

• Probability ranking principle, BM25

• IR evaluation, query completion

• Inverted index, ES, PageRank, HITS

• Relevance feedback, PRF

• EM algorithm

• RNN/LSTM

• Transformer/Bert 

• Frontier topic: recommender system

• Frontier topic: opinion analysis/mining

• Frontier topic: NMT, program synthesis

• Neural IR 



Assignment goals

Upon successful completion of this course, students should be able to: 

• Evaluate ranking algorithms by using information retrieval evaluation techniques, and implement 
text retrieval models such as TF-IDF and BM25; 

• Use Elastic search to implement a prototypical search engine on Twitter data; 

• Derive inference algorithms for the maximum likelihood estimation (MLE), implement the 
expectation maximization (EM) algorithm; 

• Use state-of-the-art tools such as LSTM/Bert for text classification tasks



Prerequisite

• CS116 is required for undergrad, CS225 is recommended (data structure in Java) 

• Fluency in Python is required 

• A good knowledge on statistics and probability 

• Knowledge of one or more of the following areas is a plus, but not required:  
Information Retrieval, Machine Learning, Data Mining, Natural Language 
Processing 

• Contact the instructor if you aren’t sure 



Format

• Meeting: every Monday 8:15-9:45 

• 4 programming assignments 
• Submit code + report 

• 1 midterm 
• in class 

• Final project



Final Project

Students choose a topic; for each topic, they pick 2-3 
coherent papers, and write a summary for the paper

Students who share the same interest are categorized into groups; each group 
propose a novel research topic motivated by their survey

Deliver a presentation in Week 14

Submit their implementation (code in Python) as well as an 8-page academic paper as 
their final project. 

Oct 19 
- Oct 26

Oct 26 - 
Nov 16

Dec 14

Dec 20



Grading

• Homework - 40%, Midterm - 30%, Project - 30% 

• Late policy 
• Submit within 24 hours of deadline - 90%, within 48 hours - 70%, 0 if code not compile 
• Late by over 48 hours are generally not permitted 

• Medical conditions 
• A sudden increase in family duty 
• Too much workload from other courses  
• The assignment is too difficult 



Plagiarism policy

• We have a very powerful plagiarism detection pipeline, do not take the risk 

• Cheating case in CS284 
• A student put all his homework on a GitHub public repo 
• In the end, we found 8+ students copied his code



Question answering

• Please do not ask your questions in Canvas, most questions can be asked on 
Piazza, otherwise use emails



Question asking protocol

• Regrading requests: email TA, cc myself, titled [CS589 regrading] 
• Deadline extension requests: email myself, titled [CS589 deadline] 
• Dropping: email myself, titled [CS589 drop] 
• All technical questions: Piazza 

• Homework description clarification 
• Clarification on course materials 

• Having trouble with homework: join my office hour directly, no need to email me 
• If you have a time conflict, email me & schedule another time 

• Project discussion: join my office hour  
• Ask any common questions shared by the class on Piazza



Your workload

First Day of  
Instruction

Project

Aug Sept Nov Oct Dec 

Lectures/Readings

Midterm

Last Day  
of Instruction

Thanks- 
giving

Programming Assignments



Books

• No text books 

• Recommended readings: 
• Zhai, C., & Massung, S. (2016). Text data management and analysis: a practical 

introduction to information retrieval and text mining. Association for Computing 
Machinery and Morgan & Claypool 

• Christopher D. Manning, Prabhakar Raghavan and Hinrich 
Schütze, Introduction to Information Retrieval, Cambridge University Press. 
2008

http://nlp.stanford.edu/~manning/
http://theory.stanford.edu/~pragh/
http://www.cis.uni-muenchen.de/personen/professoren/schuetze/
http://www.cis.uni-muenchen.de/personen/professoren/schuetze/

