CS 589 Fall 2020

Probability ranking principle

Probabilistic retrieval models

Instructor: Susan Liu

TA: Huihui Liu

Stevens Institute of Technology

Piazza

- Only 2 students had enrolled in Piazza
- Therefore, I have to state our requirement again
- Outside of OH , if you choose to use email, your question will be answered significantly slower, email: 2 days

Recap of last lecture

- The boolean retrieval system
- Vector-space model
- TF: representing documents/queries with a term-document matrix
- Rescaling methods:
- IDF: penalizing words which appears everywhere
- Term frequency rescaling (logarithmic, max normalization)
- Pivoted length normalization

Question from last lecture

- Between the two term-frequency rescaling methods, which one works better? Max normalization or logarithmic?

$$
\begin{aligned}
& \text { Max TF } \\
& \text { normalization }
\end{aligned} \quad t f(w, d)=\alpha+(1-\alpha) \frac{\operatorname{count}(w, d)}{\max _{v} \operatorname{count}(v, d)}
$$

- Max TF is unstable:
- max TF in a document vary with change of stop words set
- When max TF in document d is an outlier, the normalization is incomparable with other documents
- Does not work well with documents with different TF distribution

Today's lecture

- Basic statistics knowledge
- Random variables, Bayes rules, maximum likelihood estimation
- Probabilistic ranking principle
- Probability retrieval models
- Robertson \& Spark Jones model (RSJ model)
- BM25 model
- Language model based retrieval model

Quiz from last lecture

- Suppose we have one query and two documents:
- $q=$ "covid 19"
- doc1 = "covid patient"
- doc2 = "19 99 car wash"
- doc3 = "19 street covid testing facility is reopened next week"
- What are the rankings of score(q, doc) using VS model (w/o IDF)?
A. doc1 > doc2 > doc3
B. $\operatorname{doc} 1=\operatorname{doc} 3>\operatorname{doc} 2$
C. doc1 > doc3 > doc2
D. doc3 > doc1 > doc2

Answer

- Recall the VS model:

$$
\operatorname{score}(q, d)=\frac{q \cdot d}{\|q\| \cdot\|d\|}
$$

- $q=$ "covid 19"
- doc1 = "covid patient"
- doc2 = "19 99 car wash"
- doc3 = "19 street covid testing facility is reopen next week"
- $\operatorname{score}(q, \operatorname{doc} 1)=1 / \operatorname{sqrt}(2) /$ sqrt(2) $=0.4999$, $\operatorname{score}(q, \operatorname{doc} 2)=1 / s q r t(2) /$ $\operatorname{sqrt}(4)=0.3535$, score $(q$, doc3) $=2 /$ sqrt(2)/sqrt(9) $=0.4714$
- Therefore the answer is C : doc1 > doc3 > doc2

Random variables

- Random variables

$$
\begin{array}{ll}
\text { sequence } 10,1,0,0,1,1,0,1,0,1,0,0 & \text { Observation } \\
p(u p)=\alpha, p(\text { down })=1-\alpha & \alpha: \text { parameter } \\
p(\text { sequence })=\alpha \times(1-\alpha) \cdots \times(1-\alpha) \times(1-\alpha) & \text { Bernoulli distribution } \\
=\alpha^{\# u p} \times(1-\alpha)^{\# \text { down }} & \\
\Rightarrow \alpha=\frac{\# \text { up }}{\# \text { up } \# \text { down }} & \text { Maximum likelihood estimation }
\end{array}
$$

Maximum likelihood estimation

- Fitting a distribution model to the data
- Assumes mouse weights follow an underlying distribution

Normal
the same type.

Exponential

Gamma

Maximum likelihood estimation

- Fitting a distribution to the data
- Distributions of mouse weights

- Applications
- Making estimations for probabilities for future events to happen
- For example, predicting the probability for a document to be relevant to a query, and rank all documents by their estimated relevance score

Random variables in information retrieval

Notations: in future slides, q denotes the query, d denotes the document, rel denotes the relevance judgment

Probabilistic graphical model (underlying distribution)

parameter
distribution
parameter estimation

α
Bernoulli

$$
\alpha=\frac{\# u p}{\# u p+\# \text { down }}
$$

Θ
Multinomial-Dirichlet, 2-Poisson, etc. maximum likelihood estimation maximum a posterior estimation

Bayes' rules

Chain rule: joint distribution

$$
P(A, B)=P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Bayes' rule:

posterior likelihood prior

$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\left[\frac{P(B \mid A)}{\sum_{i X X}^{e^{-\cdots} \in\{A, \bar{A}\}} \bar{P}(\bar{B} \mid \bar{X}) \bar{P}(\bar{X})}\right]-P(A)$
$\begin{array}{ll:l}P(A \mid B) \propto P(B \mid A) P(A) & \text { skipping estimating } P(B)\end{array}$
$\sum_{A} P(A \mid B)=1$

Probability ranking principle

- Assume documents are labelled by 0/1 labels (i.e., the relevance judgement is either 0 or 1), given query q, documents should be ranked on their probabilities of relevance (van Rijsbergen 1979):

$$
\text { PRP: rank documents by } p(r e l=1 \mid q, d)
$$

- Theorem. The PRP is optimal, in the sense that it minimizes the expected loss (Ripley 1996)

Notations: in future slides, q denotes the query, d denotes the document, rel denotes the relevance judgment

Estimating $p(r e l=1 \mid q, d)$

Estimating $p(r e l=1 \mid q, d)$

$$
p(r e l=1 \mid q, d) \propto p(d \mid r e l=1, q) p(r e l=1) \longleftarrow \quad \begin{aligned}
& \text { Problems with this } \\
& \text { estimation }
\end{aligned}
$$

agree on the relative order

Estimating the generative model $p(d \mid r e l=1, q)$

$$
\begin{array}{ll}
p(d \mid r e l=1, q)=\prod_{i} p\left(w_{i} \mid r e l=1, q\right) & \stackrel{r a n k}{=} \prod_{w_{i}=1} \frac{\alpha_{i}}{\beta_{i}} \times \prod_{w_{i}=1} \frac{\left(1-\beta_{i}\right)}{\left(1-\alpha_{i}\right)} \times \mathrm{const} \\
O(\text { rel }=1 \mid q, d)=\prod_{i} \frac{p\left(w_{i} \mid r e l=1, q\right)}{p\left(w_{i} \mid r e l=0, q\right)} \times \frac{p(r e l=1)}{p(r e l=0)} & =\prod_{w_{i}=1} \frac{\alpha_{i}\left(1-\beta_{i}\right)}{\beta_{i}\left(1-\alpha_{i}\right)} \tag{3}
\end{array}
$$

$$
\begin{equation*}
\stackrel{r a n k}{=} \prod_{w_{i}=1} \frac{\alpha_{i}}{\beta_{i}} \times \prod_{w_{i}=0} \frac{\left(1-\alpha_{i}\right)}{\left(1-\beta_{i}\right)} \tag{4}
\end{equation*}
$$

$$
\text { (1) } \stackrel{\text { rank }}{=} \sum_{w_{i}=1} \log \frac{\alpha_{i}\left(1-\beta_{i}\right)}{\beta_{i}\left(1-\alpha_{i}\right)}
$$

$$
\alpha_{i}=p\left(w_{i}=1 \mid \text { rel }=1, q\right) \quad \beta_{i}=p\left(w_{i}=1 \mid r e l=0, q\right)
$$

RSJ model

$$
\begin{aligned}
O(\text { rel } & =1 \mid q, d) \stackrel{r a n k}{=} \sum_{w_{i}=1} \log \frac{\alpha_{i}\left(1-\beta_{i}\right)}{\beta_{i}\left(1-\alpha_{i}\right)} \\
\alpha_{i} & =p\left(w_{i}=1 \mid q, \text { rel }=1\right) \\
& =\frac{\operatorname{count}\left(w_{i}=1, \text { rel }=1\right)+0.5}{\operatorname{count}(r e l=1)+1} \\
\beta_{i} & =p\left(w_{i}=0 \mid q, \text { rel }=0\right) \\
& =\frac{\operatorname{count}\left(w_{i}=0, \text { rel }=0\right)+0.5}{\operatorname{count}(r e l=0)+1}
\end{aligned}
$$

(Robertson \& Sparck Jones 76)

RSJ model: Summary

- Uses only binary word occurrence (binary inference model), does not leverage TF information
- RSJ model was designed for retrieving short text and abstract!
- Requires relevance judgment
- No-relevance judgment version: [Croft \& Harper 79]
- Performance is not as good as tuned vector-space model

How to improve RSJ based on these desiderata?

Desiderata of retrieval models

- Recall the desiderata of a retrieval models:
- The importance of TF is sub-linear
- Penalizing term with large document frequency using IDF
- Pivot length normalization

How to improve RSJ based on these desiderata?

Okapi/BM25

- Estimate probability using eliteness
- What is eliteness?
- A term/word is elite if the document is about the concept denoted by the term
- Eliteness is binary
- Term occurrence depends on eliteness

Okapi/BM25

- Introduced in 1994
- SOTA non-learning retrieval model
- $\operatorname{score}(q, d)=\sum_{i \in q} c_{i}^{\text {elite }}\left(t f_{i}\right)$

$$
t f_{i}=t f(i, d)
$$

$c_{i}^{e l i t e}\left(t f_{i}\right)=\log \frac{p\left(w_{i}=t f_{i} \mid q, \text { rel }=1\right) p\left(w_{i}=0 \mid q, \text { rel }=0\right)}{p\left(w_{i}=0 \mid q, \text { rel }=1\right) p\left(w_{i}=t f_{i} \mid q, \text { rel }=0\right)}$

$$
p\left(w_{i}=t f_{i} \mid q, \text { rel }=1\right)=p\left(w_{i}=t f_{i} \mid E_{i}=1\right) p\left(E_{i}=1 \mid q, \text { rel }\right)
$$

$$
+p\left(w_{i}=t f_{i} \mid E_{i}=0\right) p\left(E_{i}=0 \mid q, r e l\right)
$$

$$
=\pi \frac{\lambda^{t f_{i}}}{t f_{i}!} e^{-\lambda}+(1-\pi) \frac{\mu^{t f_{i}}}{t f_{i}!} e^{-\mu} \quad(2 \text { Poisson model) }
$$

Okapi/BM25

$$
p\left(w_{i}=t f_{i} \mid q, r e l=1\right) \xlongequal{\pi} \pi \frac{\lambda^{t f_{i}}}{t f_{i}!} e^{-\lambda}+(1-\pi) \frac{\mu^{t f_{i}}}{t f_{i}!} e^{-\mu}
$$

- We do not know λ, μ, π
- Can we estimate λ, μ, π ? Difficulty to estimate
- Designing a parameter-free model such that it simulates $p\left(w_{i}=t f_{i} \mid q\right.$, rel $\left.=1\right)$

Simulating the 2-Poisson model

$$
c_{i}^{B M 25}\left(t f_{i}\right) \approx \log \frac{N}{d f_{i}} \times \frac{t f_{i}\left(k_{1}+1\right)}{k_{1}\left(1-b+b \frac{|d l|}{|a v g d l|}\right)+t f_{i}} \quad b=0.75, k_{1} \in[1.2,2.0]
$$

slides from Stanford CS276 Information retrieval

Analysis of BM25 formulation

Multi-field retrieval

BM25F

$$
\operatorname{score}^{B M 25 F}(q, d)=\log \frac{N}{d f_{i}} \times \frac{t f_{i}^{F}\left(k_{1}+1\right)}{k_{1}\left(1-b+b \frac{|d l|^{F}}{\mid \text { avgdl| }\left.\right|^{F}}\right)+t f_{i}^{F}}
$$

- Each variable is estimated as the weighted sum of its field value

$$
t f_{i}=\sum_{f} \alpha_{f} \times t f_{i, f} \quad d l=\underbrace{\sum_{f} \alpha_{f} \times d l_{f} \quad a v g d l=\sum_{f} \alpha_{f} \times a v g d l_{f}}_{\text {parameter estimation using grid search }}
$$

Multi-field retrieval

- BM25 outperforms TF-IDF in every field \& combined

	$[1.0,0.0,0.0]$	$[0.0,1.0,0.0]$	$[0.0,0.0,1.0]$	$[1.0,0.5,0.5]$
Python, bm2, ndcg@10	0.319	0.322	0.293	0.378
Python, tfidf, ndcg@10	0.317	0.274	0.276	0.355
Java, bm2, ndcg@10	0.327	0.287	0.254	0.376
Java, tfidf, ndcg@10	0.315	0.258	0.238	0.349
Javascript, bm2, ndcg@10	0.349	0.330	0.267	0.407
Javascript, tfidf, ndcg@10	0.346	0.289	0.247	0.374

Analysis on the n-Poisson model

- Advantage: BM25 is based on the 2-Poisson model

eliteness: d satisfies q's information need, when q is a single term
- Disadvantages:
- For single term, documents will not fall cleanly into elite/non-elite set
- For multiple term, requires a combinatorial explosion of elite set
- Requires explicit indexing of the 'elite' words

Language model-based retrieval

- A language model-based retrieval method [Ponte and Croft, 1998]

$$
\operatorname{score}(q, d)=\log p(q \mid d)=\prod_{i, w_{i} \in q} p\left(w_{i}=1 \mid d\right) \prod_{i, w_{i} \notin q}\left(1.0-p\left(w_{i}=1 \mid d\right)\right)
$$

- Bernoulli -> multinomial

$$
\begin{gathered}
\operatorname{score}(q, d)=\log p(q \mid d)=\prod_{w_{i}=1}^{V} p\left(w_{i} \mid d\right)^{c\left(w_{i}, q\right)} \quad p\left(w_{i} \mid d\right)=\left\{\begin{array}{ll}
p_{\text {seen }}\left(w_{i} \mid d\right) & \text { if } w_{i} \text { is seen in d } \\
\alpha_{d} p\left(w_{i} \mid C\right) & \text { o.w. }
\end{array} \quad \begin{array}{l}
\operatorname{rank} \\
\sum_{w_{i}=1}^{V} c\left(w_{i}, q\right) \log p\left(w_{i} \mid d\right)
\end{array}\right.
\end{gathered}
$$

Language model-based retrieval

Disclaimer: the right figure is a schematic model, not a rigorous graphical model

Language model-based retrieval

$$
\begin{aligned}
& \log p(q \mid d)=\sum_{w_{i}}^{V} c\left(w_{i}, q\right) \log p(w \mid d) \\
& =\sum_{w_{i}, w_{i} \in d} c\left(w_{i}, q\right) \log p_{\text {seen }}\left(w_{i} \mid d\right)+\sum_{w_{i}, w_{i} \notin d} c\left(w_{i}, q\right) \log \alpha_{d} p\left(w_{i} \mid C\right) \\
& =\sum_{w_{i}, w_{i} \in d} c\left(w_{i}, q\right) \log \frac{p_{\text {seen }}\left(w_{i} \mid d\right)}{\alpha_{d} p\left(w_{i} \mid C\right)}+|q| \log \alpha+\sum_{w_{i}=1}^{V} c\left(w_{i}, q\right) \log p\left(w_{i} \mid C\right)
\end{aligned}
$$

Different senses of ‘model' [Ponte and Croft, 98]

- First sense (high level): an abstraction of the retrieval task itself

Basic Search Engine Technologies

- Second sense (mid level): modeling the distribution, e.g., 2-Poisson model
- Thirds sense (low level): which statistical language model is used in $p_{\text {seen }}\left(w_{i} \mid d\right)$

Statistical language model

- A probability distribution over word sequences
- p("Today is Wednesday") ≈ 0.001
- p("Today Wednesday is") 0.0000000000001
- p("The eigenvalue is positive") 0.00001
- Unigram language model
- Generate text by generating each word INDEPENDENTLY
- Thus, $p\left(w_{1} w_{2} \ldots w_{n}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \ldots p\left(w_{n}\right)$
- Parameters: $\left\{p\left(t_{i}\right)\right\} p\left(t_{1}\right)+\ldots+p\left(t_{N}\right)=1$ (N is voc. size)

$$
\begin{aligned}
& p(" \text { today is Wed") } \\
& =p(" \text { today") } p(" i s ") p(" W e d ") \\
& =0.0002 \times 0.001 \times 0.000015
\end{aligned}
$$

Notes on language model-based retrieval

- Advantages:
- Avoided the disadvantages in eliteness
- Defines a general framework, more accurate $p_{\text {seen }}\left(w_{i} \mid d\right)$ can further improve the model
- In some cases, has outperformed BM25
- Disadvantages:
- The assumed equivalence between query and document is unrealistic
- Only studied unigram language model
- Performance is not always good

Equivalence to KL-divergence retrieval model

$$
\operatorname{score}^{L M}(q, d) \stackrel{r a n k}{=} \sum_{w_{i}, w_{i} d d} c\left(w_{i}, q\right) \log \frac{p_{\text {seen }}\left(w_{i} \mid d\right)}{\alpha_{d} p\left(w_{i} \mid C\right)}+|q| \log \alpha_{d}
$$

- KL divergence

$$
D(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}
$$

$$
-D\left(\hat{\theta}_{q} \mid \hat{\theta}_{d}\right)=\sum_{w_{i}=1}^{V} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log p\left(w_{i} \mid \hat{\theta}_{q}\right)+\left(-\sum_{w_{i}=1}^{V} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log p\left(w_{i} \mid \hat{\theta}_{d}\right)\right)
$$

smoothed constant
why not the opposite?

$$
\begin{equation*}
\sum_{w_{i}, w_{i} \in d \ldots \ldots} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log \frac{p_{\text {seen }}\left(w_{i} \mid d\right)}{\alpha_{d} p\left(w_{i} \mid C\right)}+\log \alpha_{d} \tag{Eq.1}
\end{equation*}
$$

Notes on the KL-divergence retrieval formula and Dirichlet prior smoothing

Estimating $p_{\text {seen }}\left(w_{i} \mid d\right)$

- Estimating $p_{\text {seen }}\left(w_{i} \mid d\right)$ based on the maximum likelihood estimation

$$
p_{\text {seen }}\left(w_{i} \mid d\right)=\frac{\operatorname{count}\left(w_{i}\right)}{|d l|}
$$

- Disadvantage: if the word is unseen, probability will be 0
- Solution: language model smoothing:

$$
\begin{aligned}
p_{s}\left(w_{i} \mid d\right) & =\frac{c\left(w_{i}, d\right)+\mu p\left(w_{i} \mid C\right)}{|d|+\mu} \quad \alpha_{d}=\frac{\mu}{\mu+|d|} \quad \text { (plug in Eq. 1) } \\
& =\frac{|d|}{|d|+\mu} p\left(w_{i} d\right)+\frac{\mu}{|d|+\mu} p\left(w_{i} \mid C\right) \quad \quad \text { Dirichlet smoothing }
\end{aligned}
$$

Estimating $p_{\text {seen }}\left(w_{i} \mid d\right)$

- Dirichlet smoothing

$$
\operatorname{score}^{D i r}(q, d)=\sum_{w_{i}, w_{i} \in d, p\left(w_{i} \mid \hat{\theta}_{q}\right)} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log \left(1+\frac{\operatorname{count}\left(w_{i}, d\right)}{\mu p\left(w_{i} \mid C\right)}\right)+\log \frac{\mu}{\mu+|d l|}
$$

- Jelinek-Mercer smoothing

$$
\operatorname{score}^{J M}(q, d)=\sum_{w_{i}, w_{i} \in d, p\left(w_{i} \mid \hat{\theta}_{q}\right)} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log \left(1+\frac{(1-\lambda) \operatorname{count}\left(w_{i}, d\right)}{\lambda p\left(w_{i} \mid C\right)}\right)
$$

Other smoothing methods

- Additive smoothing
- Good-Turing smoothing
- Absolute discounting
- Kneser-ney smoothing

Tuning parameters in smoothing models [Zhai and Lafferty 02]

$$
\operatorname{score}^{\text {Dir }}(q, d)=\sum_{w_{i}, w_{i} \in d, p\left(w_{i} \mid \hat{\theta}_{q}\right)} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log \left(1+\frac{\operatorname{count}\left(w_{i}, d\right)}{\mu p\left(w_{i} \mid C\right)}\right)+\log \frac{\mu}{\mu+|d l|}
$$

- Tuning parameter μ using "leave-one-out" method

$$
\hat{\mu}=\operatorname{argmax}_{\mu} \sum_{w_{i}=1}^{V} \sum_{d} \log p\left(w_{i} \mid d ; w_{i} \notin d\right) \quad \text { remove } w_{i}
$$

- Estimating parameter using Newton's method (2nd derivative)

Tuning parameters in smoothing models [Zhai and Lafferty 02]

$$
\operatorname{score}^{J M}(q, d)=\sum_{w_{i}, w_{i} \in d, p\left(w_{i} \mid \hat{\theta}_{q}\right)} p\left(w_{i} \mid \hat{\theta}_{q}\right) \log \left(1+\frac{(1-\lambda) \operatorname{count}\left(w_{i}, d\right)}{\lambda p\left(w_{i} \mid C\right)}\right)
$$

- Tuning parameter λ using MLE for the query probability

$$
p(q \mid \lambda, C)=\sum_{d} \pi_{d} \prod_{w_{i} \in q}\left((1-\lambda) p\left(w_{i} \mid d\right)+\lambda p\left(w_{i} \mid C\right)\right)
$$

- EM algorithm:

$$
\begin{aligned}
\pi_{d}^{(k+1)} & =\frac{\pi_{d}^{(k)} \prod_{w_{i} \in q}\left(\left(1-\lambda^{(k)}\right) p\left(w_{i} \mid d\right)+\lambda^{(k)} p\left(w_{i} \mid C\right)\right)}{\sum_{d} \pi_{d}^{(k)} \prod_{w_{i} \in q}\left(\left(1-\lambda^{(k)}\right) p\left(w_{i} \mid d\right)+\lambda^{(k)} p\left(w_{i} \mid C\right)\right)} \\
\lambda^{(k+1)} & =\frac{1}{|q|} \sum_{d} \pi_{d}^{(k+1)} \sum_{w_{i} \in q} \frac{\lambda^{(k)} p\left(w_{i} \mid C\right)}{\left(1-\lambda^{(k)}\right) p\left(w_{i} \mid d\right)+\lambda^{(k)} p\left(w_{i} \mid C\right)}
\end{aligned}
$$

Two-stage language models for information retrieval

Feedback language model [Zhai and Lafferty 01]

Model-based feedback in the language modeling approach to information retrieval

Feedback language model [Zhai and Lafferty 01]

$$
\begin{aligned}
& \operatorname{score}^{J M}(q, d)=\sum_{w_{i}, w_{i} \in d, p\left(w_{i} \mid \hat{\theta}_{\underline{i}}\right)} p\left(w_{i} \mid \hat{\theta}_{q}\right)^{\prime} \log \left(1+\frac{(1-\lambda) \operatorname{count}\left(w_{i}, d\right)}{\lambda p\left(w_{i} \mid C\right)}\right) \\
& p\left(w_{i} \mid q\right)=\frac{\operatorname{count}\left(w_{i}, q\right)}{|q|} \quad \text { sparsity }
\end{aligned}
$$

Evaluation on smoothing methods [Zhai \& Lafferty 02]

Collection	query	Optimal-JM	Optimal-Dir	Auto-2stage
	SK	20.3%	23.0%	$22.2 \%^{*}$
	LK	36.8%	37.6%	37.4%
	SP8	SV	18.8%	20.9%
	LV	28.8%	29.8%	20.4%
	SK	19.4%	22.3%	$21.8 \%{ }^{*}$
	LK	34.8%	35.3%	35.8%
	SV	17.2%	19.6%	19.9%
	LV	27.7%	28.2%	$28.8 \%^{*}$
ZIFF1-2	SK	17.9%	21.5%	20.0%
	LK	32.6%	32.6%	32.2%
	SV	15.6%	18.5%	18.1%
	LV	26.7%	27.9%	$27.9 \%^{*}$

Two-stage language models for information retrieval

Evaluation on smoothing methods [Zhai \& Lafferty 01b]

collection		Simple LM	Mixture	Improv.	Div.Min.	Improv.
AP88-89	AvgPr	0.21	0.296	$\mathbf{+ 4 1 \%}$	0.295	$\mathbf{+ 4 0 \%}$
	InitPr	0.617	0.591	$\mathbf{- 4 \%}$	0.617	$\mathbf{+ 0 \%}$
	Recall	$3067 / 4805$	$3888 / 4805$	$\mathbf{+ 2 7 \%}$	$3665 / 4805$	$\mathbf{+ 1 9 \%}$
	AvgPr	0.256	0.282	$\mathbf{+ 1 0 \%}$	0.269	$\mathbf{+ 5 \%}$
	InitPr	0.729	0.707	$\mathbf{- 3 \%}$	0.705	$\mathbf{- 3 \%}$
	Recall	$2853 / 4728$	$3160 / 4728$	$\mathbf{+ 1 1 \%}$	$3129 / 4728$	$\mathbf{+ 1 0 \%}$
WEB	AvgPr	0.281	0.306	$\mathbf{+ 9 \%}$	0.312	$\mathbf{+ 1 1 \%}$
	InitPr	0.742	0.732	$\mathbf{- 1 \%}$	0.728	$\mathbf{- 2 \%}$
	Recall	$1755 / 2279$	$1758 / 2279$	$\mathbf{+ 0 \%}$	$1798 / 2279$	$\mathbf{+ 2 \%}$

Comparison between BM25 and LM [Bennett et al. 2008]

Collection	Method	Parameter	MAP	R-Prec.	Prec@10
Trec8 T	Okapi BM25	Okapi	0.2292	0.2820	0.4380
	JM	$\lambda=0.7$	$\begin{aligned} & 0.2310 \\ & (\mathrm{p}=0.8181) \end{aligned}$	$\begin{aligned} & 0.2889 \\ & (\mathrm{p}=0.3495) \end{aligned}$	$\begin{aligned} & 0.4220 \\ & (\mathrm{p}=0.3824) \end{aligned}$
	Dir	$\mu=2,000$	$\begin{aligned} & \mathbf{0 . 2 4 7 0} \\ & (\mathrm{p}=0.0757) \end{aligned}$	$\begin{aligned} & 0.2911 \\ & (\mathrm{p}=0.3739) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0 . 4 5 6 0} \\ & (\mathrm{p}=0.3710) \end{aligned}$
	Dis	$\delta=0.7$	$\begin{aligned} & 0.2384 \\ & (\mathrm{p}=0.0686) \end{aligned}$	$\begin{aligned} & 0.2935 \\ & (\mathrm{p}=0.0776) \end{aligned}$	$\begin{aligned} & 0.4440 \\ & (\mathrm{p}=0.6727) \end{aligned}$
	Two-Stage	auto	$\begin{aligned} & 0.2406 \\ & (\mathrm{p}=0.0650) \end{aligned}$	$\begin{aligned} & 0.2953 \\ & (\mathrm{p}=0.0369) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4260 \\ & (\mathrm{p}=0.4282) \end{aligned}$
Trec8 TD	Okapi BM25	Okapi	0.2528	0.2908	0.4640
	JM	$\lambda=0.7$	$\begin{aligned} & 0.2582 \\ & (\mathrm{p}=0.5226) \end{aligned}$	$\begin{aligned} & 0.3038 \\ & (\mathrm{p}=0.1886) \end{aligned}$	$\begin{aligned} & 0.4600 \\ & (\mathrm{p}=0.8372) \end{aligned}$
	Dir	$\mu=2,000$	$\begin{aligned} & 0.2621 \\ & (\mathrm{p}=0.3308) \end{aligned}$	$\begin{aligned} & 0.3043 \\ & (\mathrm{p}=0.1587) \end{aligned}$	$\begin{aligned} & 0.4460 \\ & (\mathrm{p}=0.3034) \end{aligned}$
	Dis	$\delta=0.7$	$\begin{aligned} & 0.2599 \\ & (\mathrm{p}=0.1737) \end{aligned}$	$\begin{aligned} & 0.3105 \\ & (\mathrm{p}=0.0203) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 4 8 8 0} \\ & (\mathrm{p}=0.1534) \end{aligned}$
	Two-Stage	auto	$\begin{aligned} & 0.2445 \\ & (\mathrm{p}=0.2455) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2933 \\ & (\mathrm{p}=0.7698) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4400 \\ & (\mathrm{p}=0.1351) \\ & \hline \end{aligned}$

However, BM25 outperforms LM in other cases

Summary on parameter tuning

- RSJ: no parameter
- BM25: Due to the formulation of two-Poisson, parameters are difficult to estimate, so use a parameter free version to replace it
- Language model
- Leave-one-out
- EM algorithm

Translation-based language model [Xue et al. 2008]

- The retrieval model can benefit from incorporating knowledge in the formulation

$$
\begin{aligned}
\left.p_{(} w_{i} \mid d\right) & =\frac{|d l|}{|d l|+\lambda} p_{m i x}\left(w_{i} \mid d\right)+\frac{\lambda}{|d l|+\lambda} p\left(w_{i} \mid C\right) \\
p_{m i x}\left(w_{i} \mid d\right) & =(1-\beta) p\left(w_{i} \mid d\right)+\beta \sum_{t \in d} p_{t r}\left(w_{i} \mid t\right) p(t \mid d)
\end{aligned}
$$

- Translation matrix:

Performance of translation based LM [Xue et al. 2008]

| | Python | | | Java | | | JavaScript | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | R | $@ 5$ | $@ 10$ | R | $@ 5$ | $@ 10$ | R | $@ 5$ | $@ 10$ |
| TF-IDF | .299 | .301 | .360 | .285 | .282 | .352 | .305 | .315 | .378 |
| BM25 | .313 | .320 | .384 | .311 | .321 | .382 | .329 | .344 | .412 |
| TransLM | .468 | .502 | .553 | .455 | .487 | .544 | .483 | .528 | .573 |

Type	Model	Trans Prob	Wondir	
			MAP	P@10
Type I	LM		0.3217	0.2211
	Okapi		0.3207	0.2158
	RM		0.3401	0.2395
Type II	LM-Comb		0.3791	0.2368
Type III	Murdock	$P(Q \mid A)$	0.3566	0.25
	Murdock	$P(A \mid Q)$	0.3658	0.2526
	Jeon	$P(Q \mid A)$	0.3546	0.25
	Jeon	$P(A \mid Q)$	0.3658	0.2526
	TransLM	$P(Q \mid A)$	0.379	0.2658
	TransLM	$P(A \mid Q)$	0.4059	0.2684

Discussion on query length

- What if the query is very long?
- For example, the query is a paragraph or a document
- The problem of retrieval is turned into a matching problem
- i.e., semantic matching

Deep semantic matching [Pang et al. 2016]

each cell:
distributed representation of words (word2vec)

A Study of MatchPyramid Models on Ad-hoc Retrieval

Question asking protocol

- Regrading requests: email TA, cc myself, titled [CS589 regrading]
- Deadline extension requests: email myself, titled [CS589 deadline]
- Dropping: email myself, titled [CS589 drop]
- All technical questions: Piazza
- Homework description clarification
- Clarification on course materials
- Having trouble with homework: join my office hour directly, no need to email me
- If you have a time conflict, email me \& schedule another time
- Project discussion: join my office hour
- Ask any common questions shared by the class on Piazza

Homework 1

- Homework 1 is released in Canvas:
- Implementing TF-IDF and BM25 on the LinkSO dataset:
- https://sit.instructure.com/courses/44342/assignments/218604

