CS 589 Fall 2020

Information Retrieval Evaluation

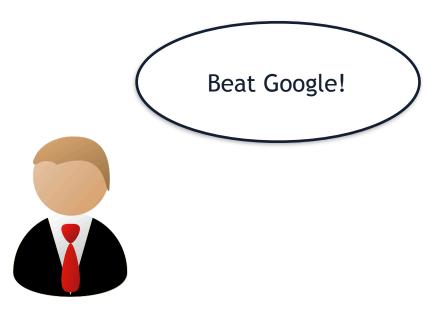
Retrieval Feedback

Instructor: Susan Liu TA: Huihui Liu

Stevens Institute of Technology

Information retrieval evaluation

- Last lecture: basic ingredients for building a document search engine
- You graduate and join Bing



Information retrieval evaluation

- How to know
 - If your search engine has outperformed another search engine
 - If your search engine performance has improved compared to last quarter?

Metrics for a good search engine

- Return what the users are looking for
- Return results fast
- Users likes to come back

- Relevance, CTR = click thru rate
- Latency
- Retention rate

Rank-based measurements

- Binary relevance
 - Precision@K
 - Mean average precision (MAP)
 - Mean reciprocal rank (MRR)
- Multiple levels of relevance
 - Normalized discounted cumulative gain (NDCG)

Precision of retrieved documents

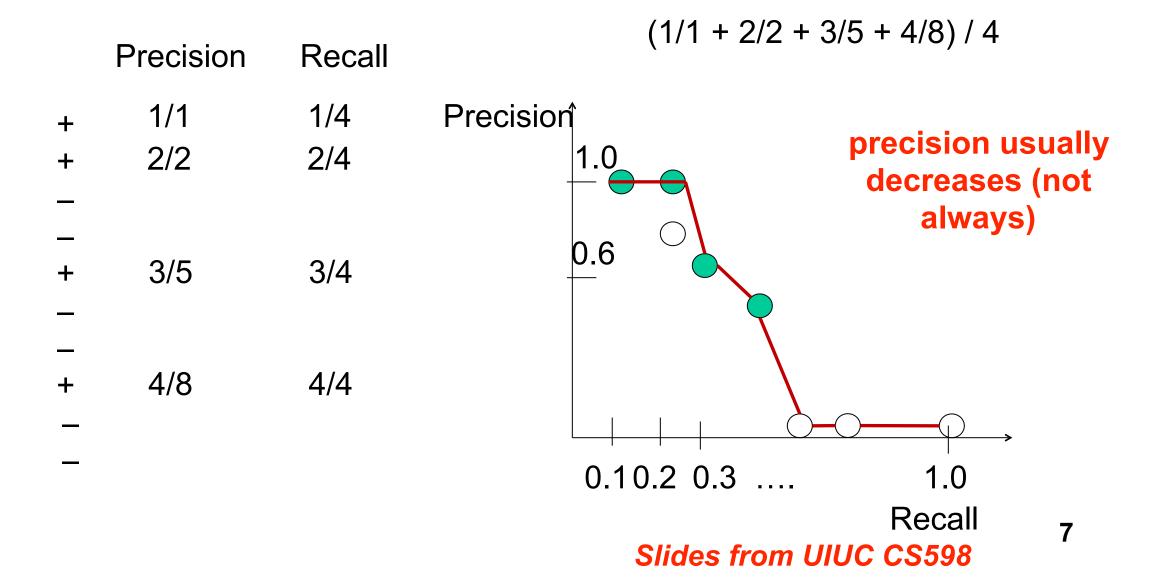
• Fraction of retrieved docs that are relevant

$$precision = \frac{\#relevant\&retrieved}{\#retrieved}$$

• Fraction of relevant documents that are retrieved

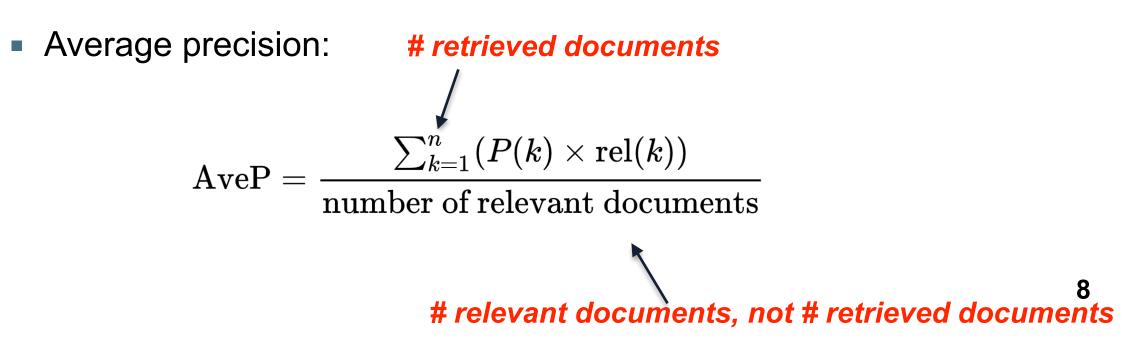
$$recall = \frac{\#relevant\&retrieved}{\#relevant}$$

Precision-recall curve

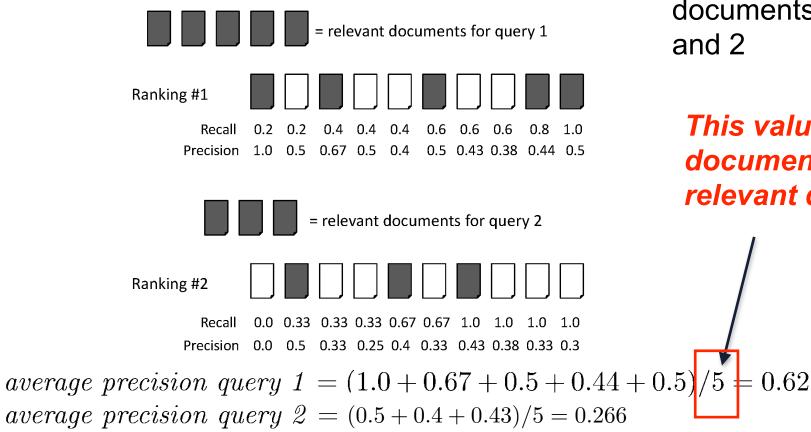


Average precision

- Consider rank position of each *relevant and retrieved* doc
 - K₁, K₂, ... K_R
- Compute Precision@K for $K = K_1, K_2, \dots K_R$



MAP



mean average precision = (0.62 + 0.266)/2 = 0.443

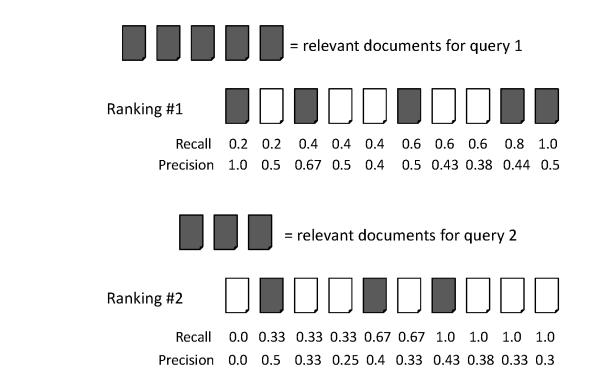
Suppose there are 5 relevant documents for both query 1 and 2

This value = #relevant documents, not # retrieved relevant documents (why?)

Slides from Stanford CS276

Mean reciprocal rank

- Measure the effectiveness of the ranked results
 - Assume users are only looking for one relevant document



RR = 1.0 / (1.0 + rank_1)

p starts from 0

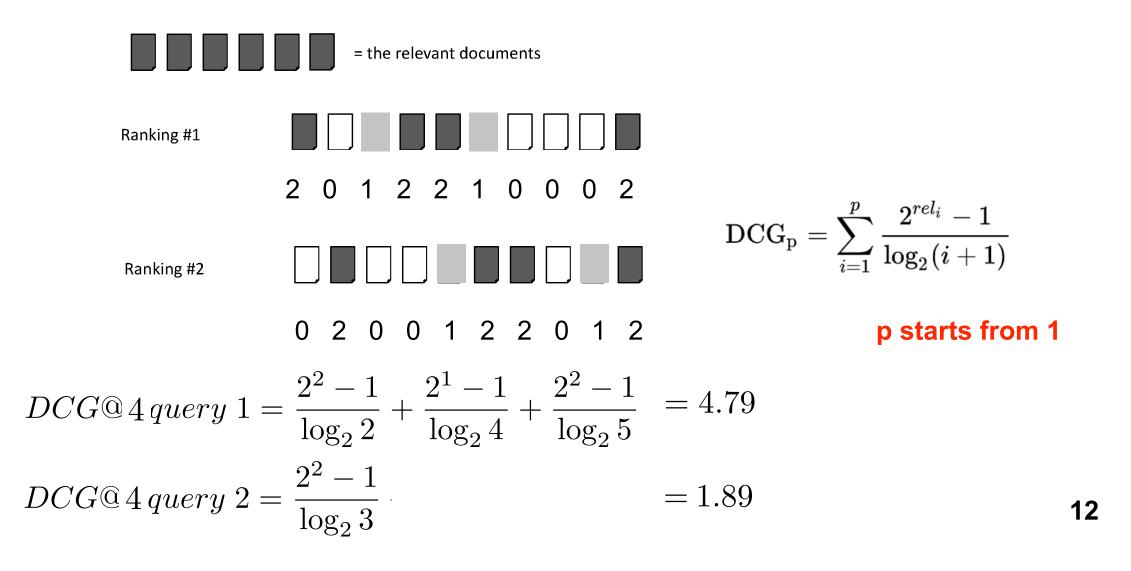
 $MRR = 1/2 \times (1 + 1/2) = 0.75$

Slides from UVA CS4780

Beyond binary relevance

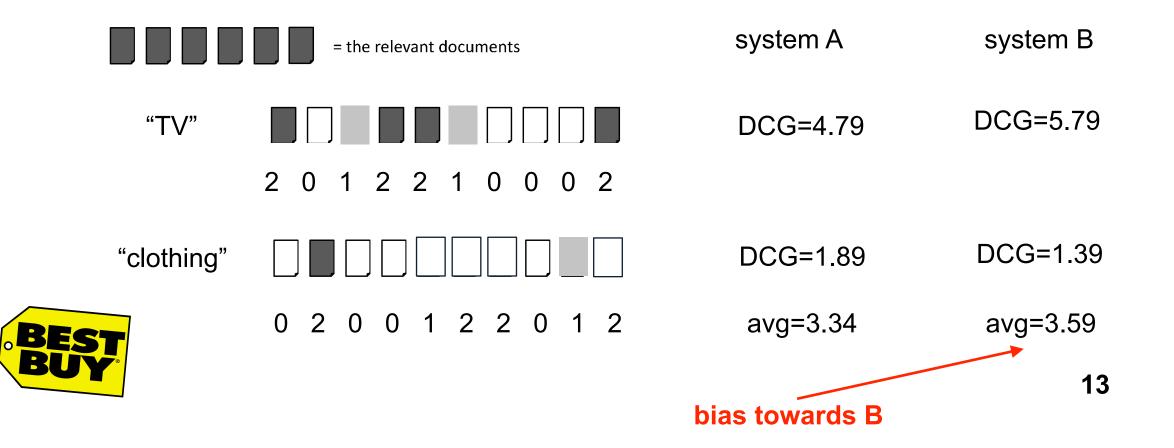
- Discounted cumulative gain (DCG)
- Popular measure for evaluating web search and related tasks
- Information gain-based evaluation (economics)
 - For each relevant document, the user has gained some information
 - The higher the relevance, the higher gain
 - The gain is discounted when the relevant document appears in a lower position

Discounted cumulative gain (DCG)

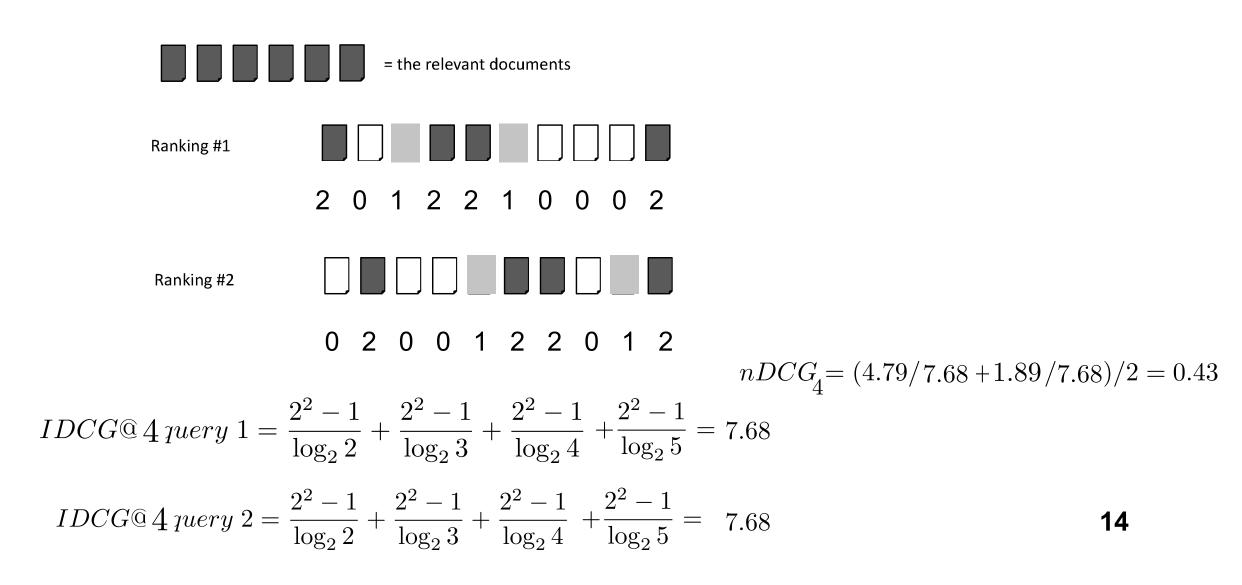


Why normalizing DCG?

 If we do not normalize DCG, the performance will be biased towards systems that perform well on queries with larger DCG scales



Normalized Discounted cumulative gain (nDCG)



Relevance evaluation methodology

- Offline evaluation:
 - Evaluation based on annotators' annotation (explicit)
 - TREC conference
 - Cranfield experiments
 - Pooling
 - Evaluation based on user click through logs (implicit)
- Online evaluation
 - A/B testing

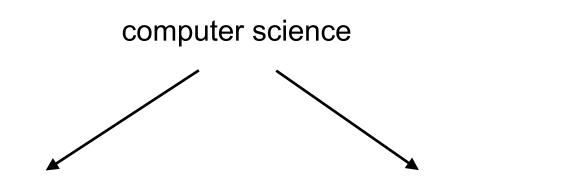
Text REtrieval Conference (TREC)

Since 1980 Lastad by MICT <num> Number: 794 Relevanc <title> pet therapy • The re <desc> Description: How are pets or animals used in therapy for humans and what are the benefits? **Different** 1 <narr> Narrative: • Web Relevant documents must include details of how pet- or animal-assisted therapy is or has been used. Relevant details include information Quest about pet therapy programs, descriptions of the circumstances in which Microl • pet therapy is used, the benefits of this type of therapy, the degree of success of this therapy, and any laws or regulations governing it.

g

The Cranfield experiment (1958)

• Imagine you need to help users search for literatures in a digital library, how would you design such a system?



artificial intelligence

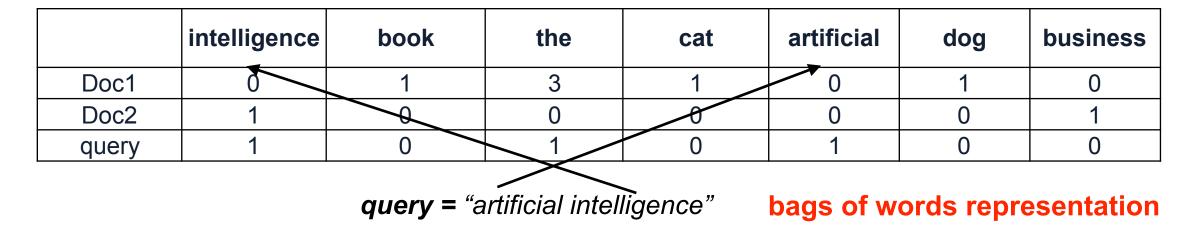
bioinformatics

query = "subject = AI & subject =
bioinformatics"

system 1: the Boolean retrieval system

The Cranfield experiment (1958)

 Imagine you need to help users search for literatures in a digital library, how would you design such a system?



Document-term matrix

system 2: indexing documents by lists of words

The Cranfield experiment (1958)

- Basic ingredients
 - A corpus of documents (1.4k paper abstracts)
 - A set of 225 queries and their information needs
 - Binary relevance judgment for each (q, d) pair
 - Reuse the relevance judgments for each (q, d) pair

query = "best phone", time = 2012, Nokia relevance = 1

query = "best phone", time = 2022**19** relevance = 0

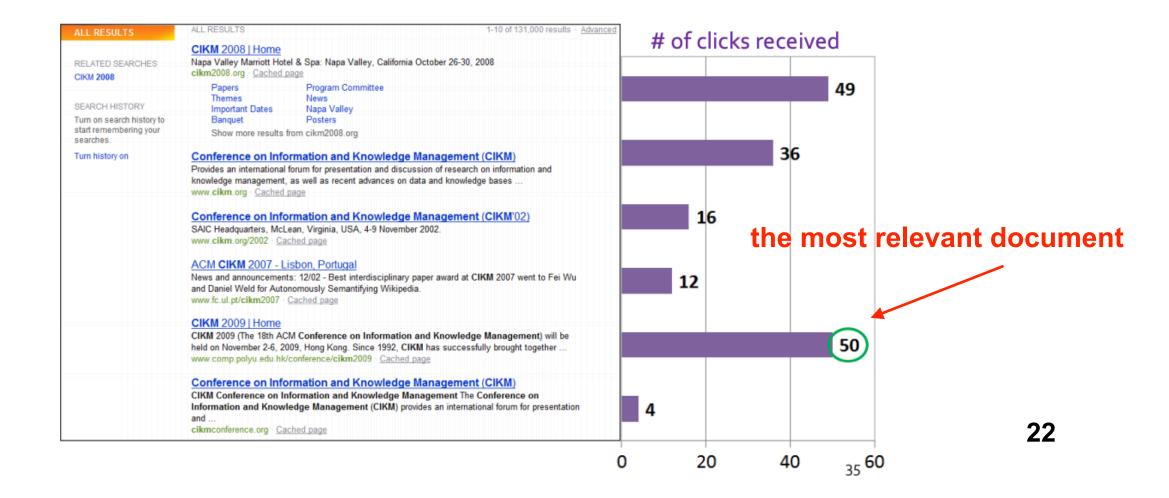
Scalability problem in human annotation

- TREC contains 225 x 1.4k = 315k (query, documents) pairs
- How to annotate so many pairs?
- Pooling strategy
 - For each of K system, first run the system to get top 100 results
 - Annotate the union of all such documents

- TREC style relevance judgment
 - Explicit relevance judgment
 - Difficult to achieve large scalability
 - Relevance is **fixed**
- Relevance judgment using user clicks
 - Implicit relevance judgment
 - Effortless relevance judgment at a large scale
 - Relevance is fixed, (assume relevance judgment stays the same upon reranking)

• Click logs for "CIKM"

slides from Stanford CS276



- System logs the users engagement behaviors:
 - Time stamp
 - Session id
 - Query id, query content
 - Items viewed by the user (in sequential order)
 - Whether each item has been clicked by the user
 - User's demographic information, search/click history, location, device
 - Dwell time, browsing time for each document
 - Eye tracking information

- Click logs are stored in large tables
- Using SQL to extract a subset of query logs

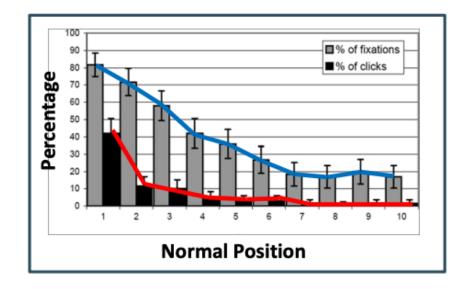
Session Id	Timestamp	Action	Action details			
••••••						
123457	1388494920	search	Query ='flawless'			
123457	1388494980	click	Page Id = '755'			
123457	1388495060	reformulation	Query ='flawless beyonce' => Reformulation = 'beyonce'			
123457	1388495115	click	Page Id = '170'			
123458	1388495415	search	Query ='cikm conference'			
123456	1388361661	reformulation	Query ='cikm conference' => Reformulation = '2014'			
123456	1388361720	click	Page Id = "45"			

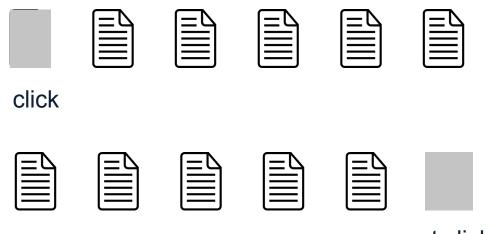
Online evaluation methodology

- Assumption made by offline evaluation
 - After reranking, relevance judgment stays the same
 - Which is not true...
- Relevance judgment is dynamic, subject to user bias
 - Bias based on positions
 - Preference shifting over time, location
 - Decoy effects

Position bias [Craswell 08]

- Position bias
 - Higher position receives more attention
 - The same item gets lower click in lower position





Decoy effects

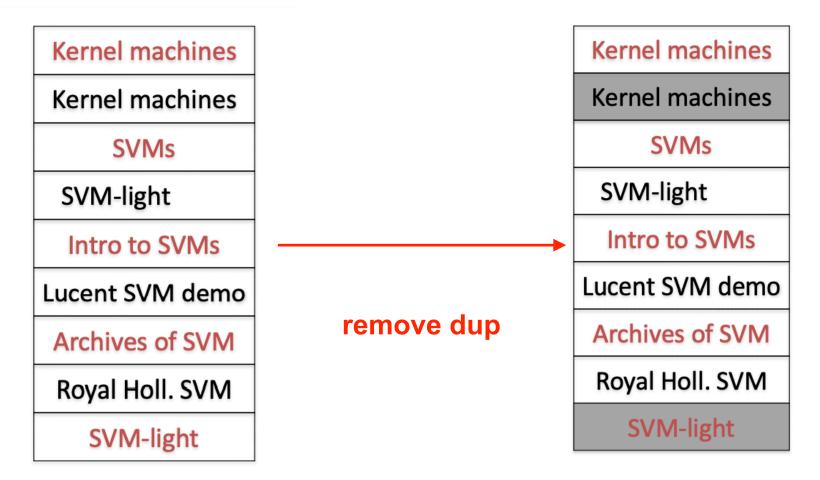
Online evaluation methodology

- Evaluation by actually having the system deployed and observe user response
 - Less scalable
 - A/B testing

Query: [support vector machines]

Ranking A	Ranking B
Kernel machines	Kernel machines
SVM-light	SVMs
Lucent SVM demo	Intro to SVMs
Royal Holl. SVM	Archives of SVM
SVM software	SVM-light
SVM tutorial	SVM software

Interleaving



A clicks = 3, B clicks = 1 29

Online evaluation methodology

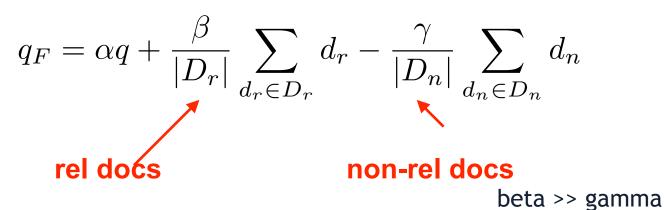
- Bing has an existing ranking algorithm A
 - Testing algorithm B is better than A
 - Strategy 1: Running A of 1 month, running B for the next month
 - Strategy 2: Running A 50% of the time, B 50% of the time
- Disadvantage with Strategy 1 and 2:
 - If B fails, it will hurts user experience from the B group
- Running B 5% of the time, running A 95% of the time

Retrieval feedback in session search

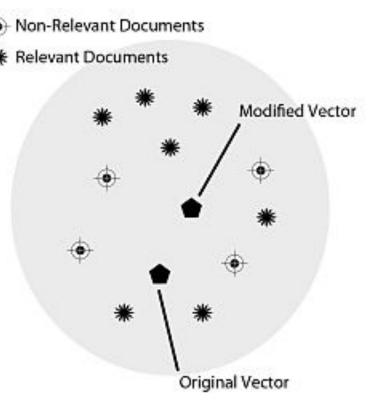


Rocchio feedback

• Feedback for vector-space model



- Rocchio's practical issues
 - Large vocabularies (only consider important words)
 - Robust and effective
 - Requires relevance feedback



Pseudo-relevance feedback

- What if we do not have relevance judgments?
 - Use the top retrieved documents as "pseudo relevance documents"
- Why does pseudo-relevance feedback work?

query = "fish tank"

www.petsmart.com > fish > aquariums 💌

Fish Tanks & Aquariums | PetSmart

125 Items - Shop the latest **fish tanks** and aquariums at PetSmart to find interesting ways showcase your favorite fish. Browse large and small tanks, fresh and ... Tanks, Aquariums & Nets Fish Tanks for Sale: Discount · Fish Aquariums

Relevance feedback in RSJ model

$$O(rel = 1|q, d) \stackrel{rank}{=} \sum_{w_i=1} \log \frac{\alpha_i (1 - \beta_i)}{\beta_i (1 - \alpha_i)}$$

(Robertson & Sparck Jones 76)

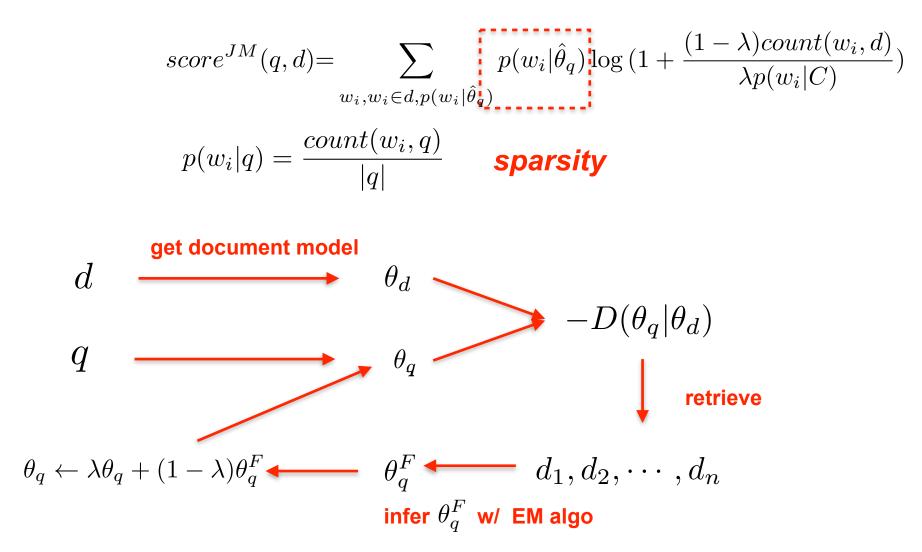
$$\alpha_i = p(w_i = 1 | q, rel = 1)$$
$$= \frac{count(w_i = 1, rel = 1) + 0.5}{count(rel = 1) + 1}$$

Probability for a word to appear in a relevant doc

$$\beta_i = p(w_i = 0 | q, rel = 0) \\ = \frac{count(w_i = 0, rel = 0) + 0.5}{count(rel = 0) + 1}$$

Probability for a word to appear in a non-relevant doc

(Pseudo)relevance feedback language model



Model-based feedback in the language modeling approach to information retrieval

Performance of relevance feedback models

S.w.	Metric	MLE	RM3	RM4	DMM	SMM	RMM
5.w.	Metric			-		SIMINI	RMM
Trained on AP1 and Tested on AP2							
	AvgPr	0.220	0.295	0.301	0.290	0.304	0.299
w/	Pr@10	0.386	0.408	0.418	0.422	0.400	0.398
-	Recall	3074	3810	3892	3681	3933	3859
	AvgPr	0.231	0.312	0.321	0.289	0.324	0.323
w/o	Pr@10	0.398	0.436	0.448	0.424	0.432	0.446
	Recall	3154	3913	3908	3674	3921	3927
Trained on TREC6 and Tested on TREC78							
	AvgPr	0.217	0.249	0.242	0.235	0.251	0.243
w/	Pr@10	0.437	0.438	0.426	0.443	0.443	0.451
	Recall	5114	5805	5739	5476	5821	5625
	AvgPr	0.217	0.251	0.243	0.235	0.252	0.249
w/o	Pr@10	0.434	0.454	0.446	0.433	0.441	0.443
-	Recall	5107	5799	5776	5500	5896	5833
	Well-Tuned on WT2G						
	AvgPr	0.293	0.338	0.319	0.327	0.330	0.309
w/	Pr@10	0.450	0.500	0.470	0.494	0.496	0.458
	Recall	1830	1822	1806	1843	1856	1811
	AvgPr	0.306	0.344	0.328	0.326	0.331	0.319
w/o	Pr@10	0.456	0.490	0.490	0.476	0.476	0.482
,	Recall	1870	1862	1879	1873	1889	1863

Query expansion

Q what is the most

- Q what is the most **common blood type**
- Q what is the most **shared video on tiktok**
- Q what is the most expensive car
- Q what is the most expensive car in the world
- Q what is the most expensive thing in the world
- Q what is the most **popular game**

Google	yoga mat
📎 On sale	
Available nearby	
😫 Buy on Google	
Price	
Up to \$15	\bigcirc
\$15 - \$30	\bigcirc
\$30 - \$50	\bigcirc
Over \$50	\bigcirc
\$to \$	GO
Brand	
Gaiam	
lululemon	
Manduka	3

Query reformulation

- Query expansion/reformulation techniques
 - Using manually created synonyms
 - Using automatically derived thesaurus
 - Using query log mining

Word	Nearest neighbors
absolutely	absurd, whatsoever, totally, exactly, nothing
bottomed	dip, copper, drops, topped, slide, trimmed
captivating	shimmer, stunningly, superbly, plucky, witty
doghouse	dog, porch, crawling, beside, downstairs
makeup	repellent, lotion, glossy, sunscreen, skin, gel
mediating	reconciliation, negotiate, case, conciliation
keeping	hoping, bring, wiping, could, some, would
lithographs	drawings, Picasso, Dali, sculptures, Gauguin
pathogens	toxins, bacteria, organisms, bacterial, parasite
senses	grasp, psyche, truly, clumsy, naive, innate