
1

CS 589 Fall 2020

Information retrieval infrastructure

Instructor: Susan Liu
TA: Huihui Liu

Stevens Institute of Technology

Metrics for a good search engine

2

• Return what the users are looking for

• Return results fast

• Users likes to come back

• Relevance, CTR = click thru rate

• Latency

• Retention rate

3

Information Retrieval Techniques

How does Google return
results so quickly?

How does Google
know cs 589 refers
to a course?
How does Google
know stevens = SIT?

Information Retrieval Infrastructure

4

Inverted index

5

• In Lecture 2, we learned retrieval models
• Compute score(q, d)
• Select the d that maximizes score(q, d)

• In an industry scale search engine, there could be trillions of q’s and billions of
d’s
• For each query, search time complexity = O(|D|)
• Solution for faster retrieval: inverted index

Inverted index

6

time complexity: O(#unique words in q x avg_len(postings lists))

⌧ |D|

Problems with inverted indexing

7

• Data processing
• Choosing the unit for indexing
• Determining the vocabulary

• Constructing/speeding up inverted
index
• Skipping index
• Prefix indexing
• Indexing with blocks
• MapReduce

• Index compression

• Other issues
• Indexing position
• Spelling correction

Choosing the correct document unit for indexing

8

• Documents often consists of sub documents
• e.g., email contains multiple attached documents

• Trade-off on the unit size
• Smaller units: missing important passages
• Larger unit: gets spurious matches, e.g., ….text messages….gold

mining…

Determining the vocabulary

9

• Tokenization

• o’neil, aren’t, C#

• Dropping stop words
• Stop words are common terms
• Web search engines generally do

not use stop words!

Determining the vocabulary

10

• Normalization
• Abbrev: USA vs. United states of America
• Case:

• Cat -> cat
• SAT -> sat

• Stemming/lemmatization
• singing -> sing, cars -> car, sat -> sit
• porter stemmer, snowball stemmer

Speeding up: skipping lists

11

• Finding the intersection of two post listings
• Without skip: O(m + n)

Speeding up: prefix indexing

12

• Speeding up the indexing using prefix tree
• time complexity: O(#unique words in q x avg_len(postings lists))

Constructing inverted index: hardware basics

13

• Decisions on an IR system largely depends on the hardware which the system
runs on

• Chunks:
• Splitting data into more chunks takes more seek time

• Blocks
• Accessing data in memory >> accessing data on disk
• Constructing inverted index using blocks
• Typical IR system: GBs of memory, disk space orders of magnitude larger

Block sort-based indexing (BSBI)

14

• Indexing large corpus
• Reuters-RCV1: 2.5GB = 2.5 x 10^9Bytes, 1 billion
• Today’s text corpus contains petabytes of data: 10^15Bytes
• Memory << size of corpus

• Index each block using memory
• Write each blocks’ index into disk
• Merge all inverted indices

Block sort-based indexing

15

segment corpus into blocks

sort (term, doc) pair in mem

store the pairs in disk

merge all pairs into final index

Single-pass in-memory indexing

16

segment corpus into blocks

write block into posting lists & dict

store the postings lists in disk

merge all blocks into final index

• Handling posting lists directly
• Eliminating the expensive sorting in BSBI
• Leveraging compression

Handling web scale indexing

17

• Web-scale indexing must use clusters of servers
• Google had 1 million servers in 2011

• Fault tolerance of a massive data center
• If a non-fault tolerance system has 1000 nodes, each has 99.9% uptime,

then 63% of the time one or more servers is down

• Solution
• Maintain a “master” server
• Break indexing into parallel tasks
• Assign each task to an idle machine

Map-reduce

18

master assigns split
to idle machine

parser emits
(term,doc) pair

merge partitions
in inverter

complete the
index

Examples of map-reduce

19

MapReduce: Industry practice

20

• Term partition vs. document partition
• Term-partitioned: one machine handles a subrange of terms
• Document-partitioned: one machine handles a subrange of documents

• Most industry search engine use document-partitioned index
• Better load balancing (why?)

Logarithmic dynamic indexing

21

• Logarithmic merge:
• Maintain a series of indexes, each twice the size of the previous one
• Keep smaller ones in memory (Z0)
• Larger ones on disks (I0, I1, …)
• If Z0 gets too big, write to disk as l0
• Or merge with l0 as Z1
• Either merge Z1 to disk as l1
• Or merge with existing l1 to form Z2

Real time search of Twitter

22

• Requires high real time search
• Low latency, high throughput query evaluation
• High ingestion rate and immediate data availability
• Concurrent reads and writes of the index

• Solution: using segments
• Each segment consists of 2^32 tweets (in memory)
• New posts are appended to the posting lists
• Only one segment can be written to at each time

Index compression

23

• Why compression?
• Using less disk space
• Compressing dictionary

• Allowing the dictionary to be stored in memory
• Compressing posting files

• Reducing disk space

• Zipf’s law
• The ith most frequent term has frequency proportional to 1/i

Dictionary compression

24

• Most of the space in the table is wasted
• Most words are 20 bytes
• Table storage = 28N

Dictionary-as-a-string

25

• Table storage = 11N

• How to further improve the storage space?
• Instead of storing absolute term pointers, store the gaps

4 bytes 4 bytes 3 bytes

Dictionary-as-a-string

26

• Table storage = 8N + 3N * (7/12) = 9.75N < 11N

• Trade-off between skipping more vs. skipping less

4 bytes 4 bytes

1 byte

3 bytes

Postings compression

27

• Observations of posting files
• Instead of storing docID, store gaps
• Brutus: 2,4,8,3,4,5,15
• Binary seq: 10,100,1000,11,100,101,1111

• Prefix encoding
• Binary encoding such that the sequence can be uniquely decoded
• e.g., Huffman encoding
• Unary encoding: {2:110,4:11110, …}
• A uniquely decodable seq: 110111101111111101110…

Postings compression

28

• Problem with unary encoding
• Too long!

• Gamma code of 13: 1110,101
• Unary code of length - 1: 1110
• Offset (last length - 1 bits): 13 → 1101 → 101

• What is the gamma code of 5? 101 -> 110,01

• We can prove gamma code is uniquely decodable

• Gamma code compression rate: 11.7%

Indexing Position

29

• Indexing the position of word within the document

• Intersection algorithm finds where the two terms appear between within k words

Brutus: 2:<0>, 4: <429,433>, 8: <150>, …

Ceasar: 1:<10>, 2: <5>, 8: <17, 250>, …

Spelling correction

30

• Edit distance

• k-gram index for spelling correction

• context sensitive spelling correction

Edit distance

31

• Dynamic programming: O(|s1| x |s2|)

Levenshtein distance

k-gram indexes for spelling correction

32

• Running DP on all pairs of words is time consuming

• Leveraging k-gram index to speed up spelling correction
• boardroom vs. bord

boarder:3
boardroom: 2
aboard: 2
ardent:1
…

Context sensitive spelling correction

33

• How to correct “flew form healthrow”?
• All three words are spelled correctly
• Enumerating each character: the space is large
• Solution: using logs of queries, e.g., flew from vs. fled fore

Li et al. A generalized hidden Markov model with discriminative training for
query spelling correction. SIGIR 2012

PageRank

34

• How to rank webpages?
• Using retrieval models: only captures relevance

• Capturing quality of web pages:
• Based on how often the page is cited
• Intuition: a popular website (e.g., Google) would be cited by a lot of other

webpages

PageRank

35

• “The Anatomy of a Large-Scale
Hypertextual Web Search Engine” -
Sergey Brin and Lawrence Page,
Computer networks and ISDN systems,
1998

• Favors pages that are highly cited, and
pages cited by highly cited pages

1/2 probability of randomly
walking into B

PageRank

36

• Assign each node an initial page rank

• Repeat until convergence
• Calculate the page rank of each node

using the equation

Problems of page rank

37
rich gets richer Google bombing

HITS

38

• Hubs: compilations of a broad catalog of information that led users
direct to other authoritative pages

• Authorities: a page that is linked by many different hubs

HITS

39

• Repeat k times
• Update hub score: v = A^T u
• Update authority score: u = A^T v

Search engine tools

40

• Apache Lucene
• Free and open search engine

library
• First developed in 1999 

• ElasticSearch
• A search engine
• based on Lucene

ElasticSearch

41

• Using a REST api

Homework 2: Using ElasticSearch to build a search engine

42

• Build an inverted index

• Evaluate three search
algorithm’s performance
• TF-IDF
• BM25
• Dirichlet-LM

