CS 589 Fall 2020

Learning to rank

web search

Instructor: Susan Liu TA: Huihui Liu

Stevens Institute of Technology

Review of what we've learned

www.cs.stevens.edu > ~xliu127 > teaching > cs589_20f <

cs589

CS 589: Text Mining and Information Retrieval. Home | Canvas | Resources | FAQ. Following **Stevens**' guidelines on the coronavirus emergency (COVID-19), ...

evaluating accuracy (lecture 3)

Recap of retrieval models

 In Lecture 2, we learned how to measure the similarity between a query and a document

$$score(q,d) = \frac{q \cdot d}{\|q\| \cdot \|d\|}$$
$$score^{BM25}(q,d) = \sum_{w_i \in q} \log \frac{N}{df_i} \times \frac{tf_i (k_1+1)}{k_1 \left(1-b+b \frac{|d|}{|avgdl|}\right) + tf_i}$$
$$score^{LM}(q,d) \stackrel{rank}{=} \sum_{w_i, w_i \in d} c(w_i,q) \log \frac{p_{seen}(w_i|d)}{\alpha_d p(w_i|C)} + |q| \log \alpha_d$$

The disadvantage of retrieval models

- Cannot adapt to users' fine-grained intents
 - e.g., adapting to certain context (location, demographic information)
 - no personalization
- Cannot naturally leverage the massive amount of user feedback signals
- Formulation is complicated, difficult to tune parameter, e.g., the two-Poisson model
- Difficulty choosing a retrieval model

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot \left(1-b+b \cdot rac{|D|}{ ext{avgdl}}
ight)}$$

Today's lecture

Today's lecture

- Web search
 - User clicks as implicit feedback
 - Search engine position bias
- Learning to rank
 - Pointwise learning to rank
 - Pairwise learning to rank
 - Listwise learning to rank
- Gradient boosting decision/regression tree (GBDT/GBRT)

What is machine learning?

1	A	В	С	D
1	Country	Age	Salary	Purchased
2	France	44	72000	0
3	Spain	27	48000	1
4	Germany	30	54000	0
5	Spain	38	61000	0
6	Germany	40	1000	1
7	France	35	58000	1
8	Spain	78	52000	0
9	France	48	79000	1
10	Germany	50	83000	0
11	France	37	67000	1

- Machine learning
 - Decision tree
 - Naive bayes
 - logistic regression

• ...

 $y \sim w^T \mathbf{x} + b$

Objective: cat vs. dog

Facial feature: [0.3, -0.2, 0.5, ...]

Machine learning
 Learning to rank

input: $(x_1, y_1), \dots, (x_n, y_n)$ $((q_1, d_1), y_1), \dots, ((q_n, d_n), y_n)$

learning:
$$f = \arg \max_{f'} O(f'(x), y)$$
 $f = \arg \max_{f'} O(f'(q, d), y)$

lossaccuracy, squarefunction:loss, hinge loss

P@k, MAP, NDCG

- An important idea in the past decade of IR community
 - Deployed in industry search engines
 - Yahoo! learning to rank challenge [2011]
- Why does it take so long?
 - Limited data access (search engine, mobile devices was popular only in the last 1-2 decades, data privacy problem)
 - It was possible to tune traditional IR models by hand

- Feature engineering in modern search engines
 - Log frequency of query word in anchor text?
 - Query word in color on page?
 - # of images on page?
 - # of (out) links on page?
 - PageRank of page?
 - URL length?
 - URL contains "~"?
 - Page edit recency?
 - Page loading speed

- Pointwise
 - Fit the absolute labels individually
 - e.g., A. Shashua and A. Levin, NIPS 2002
- Pairwise
 - Fit the relative order
 - e.g., RankSVM
- Listwise
 - Fit the metric of the entire ranked list
 - e.g., LambdaMART, XGBoost

Pointwise learning to rank = Regression

• Reducing the ranking problem to

Regression:

$$O(f'(q,d), y) = -\sum_{i} (y_i - f(q_i, d_i))^2$$

Classification:

$$O(f'(q,d),y) = \sum_{i} \sigma(f(q_i,d_i) = y_i)$$

Shashua et al. Ranking with large margin principle. NIPS 2002

Cosssock et al. Subset ranking using regression. COLT 2006

Pointwise learning to rank = Regression

• Collect a training corpus of (q,d,r) triples

 $score(q,d) = w^T \times [cosine, bm25, \cdots] + b$

$$\min_{w,b} \sum_{(q,d,r)} (r - score(q,d))^2$$

exampleID	query ID	doc ID	cosine	bm25	span length	 relevance
1	0	0	0.032	0.004	3	0
2	0	1	0.02	0.022	4	1
3	0	2	0.043	0.03	2	0
4	1	0	0.027	0.028	3	1
5	1	3	0.009	0.328	2	1
6	1	4	0.04	0.001	5	0

Ranking is easier than regression

 \star \star \star \star

Pointwise -> pairwise learning to rank

Pointwise learning to rank:

$$score(q,d) = w^T \times [cosine, bm25, w, \cdots] + b$$

$$\min_{w,b} \sum_{(q,d,r)} (r - score(q,d))^2$$

Pairwise learning to rank (example):

$$s_i = wx_i + b$$
 $P(d_i \succ d_j) = \frac{1}{1 + e^{-\sigma(s_i - s_j)}}$

$$\min_{\Theta} \sum_{i,j} \mathbb{1}[r_i > r_j] \log P(d_i \succ d_j) - (1 - \mathbb{1}[r_i \succ r_j]) \log (1 - P(d_i \succ d_j))$$

Ranking based on machine learning algorithms

- SVM^{*Rank*} (Joachims et al. 2002)
 - Ranking algorithm based on support vector machine
- Neural network: RankNet (Burges et al. 2006)
- Tree ensemble
 - Random forests (Breiman and Schapire)
 - Multi additive regression trees (Friedman, 1999)
 - Gradient boosted decision tree (Burges 2010)

Yahoo! learning to rank challenges

- Yahoo! Webscope dataset : 36,251 queries, 883k documents, 700 features, 5 ranking levels
 - Ratings: Perfect (navigational), Excellent, Good, Fair, Bad
- LambdaMART (Burges et al.) was the linear combination of 12 models:
 - 8 Tree Ensembles (LambdaMART)
 - 2 LambdaRank Neural Nets
 - 2 MART models using logistic regression loss

Regression tree

• Regression tree vs decision tree

decision tree

regression tree 19

Regression tree

slides from Stanford CS276

20

Boosting in machine learning

- AdaBoost: using the ensemble of multiple weak learners to build a high accuracy classifier
 - Weak learners = small decision trees (1-split decision stumps)
 - Weights for each learner and instance
 - Instances are weighed on probability it's mistaken
 - Learners are weighed on its accuracy

```
Input: \ell, \alpha, \{(\mathbf{x}_i, y_i)\}, \mathbb{A}
H_0 = 0
\forall i: w_i = \frac{1}{n}
for t=0:T-1 do
       h = \mathbb{A}(w_1, \mathbf{x}_1, y_1), ..., (w_n, \mathbf{x}_n, y_n)
      \epsilon = \sum_{i:h(\mathbf{x}_i) \neq y_i} w_i
       if \epsilon < \frac{1}{2} then
              \alpha = \frac{1}{2} \ln(\frac{1-\epsilon}{\epsilon})
              H_{t+1} = H_t + \alpha h
             \forall i: w_i \leftarrow \frac{w_i e^{-\alpha h(\mathbf{x}_i)y_i}}{2\sqrt{\epsilon(1-\epsilon)}}
       else
              return (H_t)
       end
       return (H_T)
end
```

Gradient boosting regression tree

• Residuals

Gradient boosting regression tree

Input: training set $\{(x_i, y_i)\}_{i=1}^n$, a differentiable loss function L(y, F(x)), number of iterations M.

Algorithm:

1. Initialize model with a constant value:

$$F_0(x) = rgmin_{\gamma} \sum_{i=1}^n L(y_i,\gamma).$$

2. For m = 1 to M:

1. Compute so-called pseudo-residuals:

$$r_{im} = -igg[rac{\partial L(y_i,F(x_i))}{\partial F(x_i)}igg]_{F(x)=F_{m-1}(x)} ext{ for } i=1,\ldots,n.$$

residuals of square loss are just pseudo gradients

(which is why it's called gradient boosting)

2. Fit a base learner (e.g. tree) $h_m(x)$ to pseudo-residuals, i.e. train it using the training set $\{(x_i, r_{im})\}_{i=1}^n$.

3. Compute multiplier γ_m by solving the following one-dimensional optimization problem:

$$\gamma_m = rgmin_\gamma \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$

4. Update the model:

$$F_m(x)=F_{m-1}(x)+\gamma_mh_m(x)$$

3. Output $F_M(x)$.

$$\min_{w,b} \sum_{(q,d,r)} (r - score(q,d))^2$$

Gradient boosting regression tree example

• In the first iteration, fO(x) = mean value

24

Gradient boosting regression tree example

• After the second iteration, F(x) = f0(x) + f1(x)

Gradient boosting regression tree example

• After the third iteration, F(x) = f0(x) + f1(x) + f2(x)

26

RankNet [Burges et al. 2010]

• Use si to denote the ranking function:

$$s_i = wx_i + b \qquad P(d_i \succ d_j) = \frac{1}{1 + e^{-\sigma(s_i - s_j)}}$$
$$\min_{\Theta} \sum_{i,j} \mathbb{1} [r_i > r_j] \log P(d_i \succ d_j) - (1 - \mathbb{1} [r_i \succ r_j]) \log (1 - P(d_i \succ d_j))$$

• Plugging in the probability gives rise to:

$$\min_{\Theta} \sum_{i,j} C_{i,j}$$
$$C_{i,j} = \frac{1}{2} (1 - S_{i,j}) \sigma(s_i - s_j) + \log(1 + e^{-\sigma(s_i - s_j)}), S_{i,j} \in \{0, +1, -1\}$$

Sij = 1 if di is more relevant than dj; -1 if the reverse, and 0 if the they have the same label

RankNet [Burges et al. 2010]

$$\begin{split} C_{i,j} &= \frac{1}{2} (1 - S_{i,j}) \sigma(s_i - s_j) + \log \left(1 + e^{-\sigma(s_i - s_j)} \right), S_{i,j} \in \{0, +1, -1\} \\ &= \frac{\partial C_{i,j}}{\partial s_i} = \sigma \left(\frac{1}{2} (1 - S_{i,j}) - \frac{1}{1 + e^{\sigma(s_i - s_j)}} \right) = -\frac{\partial C_{i,j}}{\partial s_j} \\ \frac{\partial C_{i,j}}{\partial w_k} &= \frac{\partial C_{i,j}}{\partial s_i} \frac{\partial s_i}{\partial w_k} + \frac{\partial C_{i,j}}{\partial s_j} \frac{\partial s_j}{\partial w_k} = \sigma \left(\frac{1}{2} (1 - S_{i,j}) - \frac{1}{1 + e^{\sigma(s_i - s_j)}} \right) \left(\frac{\partial s_i}{\partial w_k} - \frac{\partial s_j}{\partial w_k} \right) = \lambda_{i,j} \left(\frac{\partial s_i}{\partial w_k} - \frac{\partial s_j}{\partial w_k} \right) \\ \frac{\partial \Sigma}{\partial w_k} &= \sum_{i,j} \frac{\partial C_{i,j}}{\partial w_k} = \sum_{i,j} \lambda_{i,j} \left(\frac{\partial s_i}{\partial w_k} - \frac{\partial s_j}{\partial w_k} \right) = \sum_i \left[\sum_{j:\{i,j\} \in I} \lambda_{i,j} - \sum_{l:\{l,i\} \in I} \lambda_{l,i} \right] \frac{\partial s_i}{\partial w_k} \right] \\ \lambda_i \end{split}$$

{i, j} in I: for all pairs of i, j in the data (both positive and negative)

LambdaRank

• RankNet: minimize the pairwise ranking error

$$\lambda_{i,j} = \sigma(\frac{1}{2}(1 - S_{i,j}) - \frac{1}{1 + e^{\sigma(s_i - s_j)}})$$

• LambdaRank: minimize the pairwise ranking error, scale by the change in NDCG σ

$$\lambda_{i,j} = -\frac{\sigma}{1 + e^{(\sigma(s_i - s_j))}} |\Delta NDCG|$$

LambdaMART [Burges et al. 2010]

- Lambdas are kind of "gradients" in RankNet
- In MART, with the specific lambda as gradients, we get:
 - LambdaMART = LambdaRank + MART (gradient boosting)

```
set number of trees N, number of training samples m, number of leaves per tree L
learning rate \eta
for i = 0 to m do
    F_0(x_i) = \text{BaseModel}(x_i) //If BaseModel is empty, set F_0(x_i) = 0
end for
for k = 1 to N do
    for i = 0 to m do
        y_i = \lambda_i
                   dy<sub>i</sub>
        w_i = \frac{\partial F_{k-1}(x_i)}{\partial F_{k-1}(x_i)}
    end for
    {R_{lk}}_{l=1}^{L}
                   // Create L leaf tree on \{x_i, y_i\}_{i=1}^m R_{lk} is data items at leaf node l
   \gamma_{lk} = \frac{\sum_{x_i \in R_{lk}} y_i}{\sum_{x_i \in R_{lk}} w_i} // Assign leaf values based on Newton step.
    F_k(x_i) = F_{k-1}(x_i) + \eta \sum_l \gamma_{lk} I(x_i \in R_{lk}) // Take step with learning rate \eta.
end for
```

XGBoost [Chen and Guestrin]

- State-of-the-art algorithm for gradient boosting
- Ingredients
 - Regularization
 - Gradient boosting
 - Approximate greedy algorithm
 - Weighted quantile sketch
 - Sparsity aware split finding
 - Parallel learning

• . . .

LTR: real world use

- Systems that currently used LambdaMART:
 - Bing, search ads
- However:
 - Machine learning was not heavily used in Google! (why?)
 - Rule based systems are more interpretable and easy to debug:

From Google's dominance in web search, it's fairly clear that the decision to optimize for explainability and control over search result rankings has been successful at allowing the team to iterate and improve rapidly on search ranking quality

(answer from Quora, 2011)

https://www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-ranking-and-less-for-their-search-ranking-What-led-to-this-difference

LTR: real world use

- In 2015, Google introduced RankBrain, a query interpretability approach
- The 3rd important feature of Google
- Guessing game of what ambiguous queries mean
 - Human: 70%
 - RankBrain: 80%

Optimizing CTR for industry search engine

Job description

Senior Machine Learning Scientist

The Machine Learning Scientist focuses on core machine learning techniques that include search ranking, recommender systems, natural language processing, computer vision, deep learning, fraud and abuse detection, advertising technologies, personalization and predictive modeling. Our Machine Learning scientists have the opportunity to build cutting-edge e-commerce technologies in all these areas and apply their ideas in different products across our platform. We are looking for individuals who are passionate about machine learning and have a track record as production quality engineers. The Senior Machine Learning Scientist is self-sufficient and can hit the ground running.

Job Responsibilities

 Design and implement core machine learning algorithms used by different product teams, included but not limited to: search ranking, recommender systems, natural language processing, computer vision, deep learning, fraud and abuse detection, advertising technologies, personalization, marketing, CRM and supply chain **Boss**: I have all the **user click logs** (3 million records) for the last year, implement an algorithm for improving the click through rate for the next quarter

Web search: how clicks happen

ALL RESULTS	ALL RESULTS		1-10 of 131,000 results	Advanced		
RELATED SEARCHES	CIKM 2008 Home Napa Valley Marriott Hotel & Spa: Napa Valley, California October 26-30, 2008 cikm2008.org · <u>Cached page</u>					
	Papers Themes	Program Committee News				
SEARCH HISTORY	Important Dates	Napa Valley				
Turn on search history to	Banquet	Posters				
start remembering your searches.	Show more results	from cikm2008.org				
Turn history on	Conference on Information and Knowledge Management (CIKM)					
	Provides an international forum for presentation and discussion of research on information and					
	knowledge management, as well as recent advances on data and knowledge bases					
	www.cikm.org · Cached page					
	Conference on Information and Knowledge Management (CIKM'02)					
	SAIC Headquarters, McI	Lean, Virginia, USA, 4-9 November 2002.				
	www.cikm.org/2002 · Cached page					
	ACM CIKM 2007 - Lisbon, Portugal					
	News and announcements: 12/02 - Best interdisciplinary paper award at CIKM 2007 went to Fei Wu					
	and Daniel Weid for Autonomously Semantilying Wikipedia.					
	www.rc.ui.pretkinzovr - <u>Cacheo page</u>					
	CIKM 2009 Home					
	CIKM 2009 (The 18th A0	CM Conference on Information and Knowledge	Management) will be			
	held on November 2-6, 2009, Hong Kong. Since 1992, CIKM has successfully brought together					
	www.comp.polyu.edu.hk/conference/cikm2009 · Cached page					
	Conference on Information and Knowledge Management (CIKM)					
	CIKM Conference on Information and Knowledge Management The Conference on					
	Information and Knowledge Management (CIKM) provides an international forum for presentation and					
	cikmconference.org · Ca	ached page				

query = "CIKM" (year = 2009)

Which websites are most clicked?

- Relevance
- Context (location, time)
- Personalization
- Other bias

User clicks as implicit feedback

- User clicks != explicit relevance judgment
 - Position bias
 - Exploratory search: clicks on A, not click on B does not always mean A is more relevant than B
 - Clicks are inconsistent
- User clicks ~ noisy relevance feedback
 - Debias the feedback
 - Processing user clicks for better quality
 - Using comparative user feedback

Position bias

• Users always click higher ranked items, regardless of their (relative) relevance

- Higher positions receive more user attention (eye fixation) and clicks than lower positions.
- This is true even in the extreme setting where the order of positions is reversed.
- "Clicks are informative but biased".

[Joachims+07]

Position bias modeling

• Hypothesis testing on user click models:

Hypothesis 1: Click probability is independent of position

 $c_{di} = r_d = c_{dj}$

Hypothesis 2: Click probability is a mixture model

$$c_{di} = \lambda \, r_d + (1 - \lambda) \, b_i$$

Hypothesis 3: Click probability follows a cascade model

$$c_{di} = r_d \prod_{j=1}^{i-1} (1 - r_{docinrank:j})$$

Craswell et al. An Experimental Comparison of Click Position-Bias Models. WSDM 2088

Position bias modeling

- Testing hypothesis using a small portion of users in a search engine
 - query, A, B, m
 - query, B, A, m
- There are four types of events:
 - A clicked, B not clicked
 - B clicked, A not clicked
 - both A/B clicked
 - neither A/B clicked
- Based on query, A, B, m's result + hypothesis, estimate query, B, A, m's result

Position bias modeling [Craswell 2009]

• Using cross entropy to examine hypothesis

Cross Entropy =
$$-\sum_{e} p(e) \log p'(e)$$

Cascade model has the lowest CE

Model	Cross Entropy
Best Possible	0.141 ± 0.0055
Logistic	$\begin{array}{c} 0.225 \pm 0.0052 \\ 0.236 \pm 0.0063 \end{array}$
Examination Baseline	$\begin{array}{c} 0.247 \pm 0.0072 \\ 0.250 \pm 0.0073 \end{array}$

Leveraging other user signals

- SAT clicks
 - Clicks that are long enough (> 30 sec)
- Using eye tracking

Using comparative user feedback

clicked documents are more relevant than unclicked documents (pairwise learning to rank)

Summary

- Web search with user feedback
 - User clicks as implicit feedback
 - Search engine position bias
- Learning to rank
 - Regression tree
 - Gradient boosting
 - RankNet, LambdaRank, LambdaMART
- Real-world use of LambdaMART