
1

CS 589 Fall 2020

Learning to rank

web search

Instructor: Susan Liu
TA: Huihui Liu

Stevens Institute of Technology

2

Review of what we’ve learned

IR infrastructure (lecture 4)

How does Google know cs 589 refers to
a course?
How does Google know stevens = SIT?

evaluating accuracy (lecture 3)

Recap of retrieval models

3

• In Lecture 2, we learned how to measure the similarity between a query and a
document

scoreLM (q, d)
rank
=

X

wi,wi2d

c(wi, q) log
pseen(wi|d)
↵dp(wi|C)

+ |q| log↵d

score(q, d) =
q · d

kqk · kdk

scoreBM25(q, d) =
X

wi2q

log
N

dfi
⇥ tfi (k1 + 1)

k1
⇣
1� b+ b |dl|

|avgdl|

⌘
+ tfi

The disadvantage of retrieval models

4

• Cannot adapt to users’ fine-grained intents
• e.g., adapting to certain context (location, demographic information)
• no personalization

• Cannot naturally leverage the massive amount of user feedback signals
• Formulation is complicated, difficult to tune parameter, e.g., the two-Poisson

model
• Difficulty choosing a retrieval model

Today’s lecture

5

Today’s lecture

6

• Web search
• User clicks as implicit feedback
• Search engine position bias

• Learning to rank
• Pointwise learning to rank
• Pairwise learning to rank
• Listwise learning to rank

• Gradient boosting decision/regression tree (GBDT/GBRT)

What is machine learning?

7

• Machine learning
• Decision tree
• Naive bayes
• logistic regression
• …

y ⇠ wTx+ b

Learning to rank

8

Objective: cat vs. dog

TF-IDF score = 0.5

BM25 score = 0.35

LM score = 0.3

? Objective function:
Evaluation metric, e.g.,
NDCG

context, e.g., location

Facial feature: [0.3, -0.2, 0.5, …]

Learning to rank

9

• Machine learning • Learning to rank

(x1, y1), · · · , (xn, yn)

f = argmax
f 0

O(f 0(x), y)

input:

learning:

((q1, d1), y1), · · · , ((qn, dn), yn)

loss
function:

accuracy, square
loss, hinge loss

P@k, MAP, NDCG

f = argmax
f 0

O(f 0(q, d), y)

Learning to rank

10

• An important idea in the past decade of IR community
• Deployed in industry search engines
• Yahoo! learning to rank challenge [2011]

• Why does it take so long?
• Limited data access (search engine, mobile devices was popular only in

the last 1-2 decades, data privacy problem)
• It was possible to tune traditional IR models by hand

Learning to rank

11

• Feature engineering in modern search engines

Learning to rank

12

• Pointwise
• Fit the absolute labels individually
• e.g., A. Shashua and A. Levin, NIPS 2002

• Pairwise
• Fit the relative order
• e.g., RankSVM

• Listwise
• Fit the metric of the entire ranked list
• e.g., LambdaMART, XGBoost

Pointwise learning to rank = Regression

13

• Reducing the ranking problem to

Regression:

Classification:

Shashua et al. Ranking with large margin principle. NIPS 2002

Cosssock et al. Subset ranking using regression. COLT 2006

O(f 0(q, d), y) = �
X

i

(yi � f(qi, di))
2

O(f 0(q, d), y) =
X

i

�(f(qi, di) = yi)

Pointwise learning to rank = Regression

14

exampleID query ID doc ID cosine bm25 span
length … relevance

1 0 0 0.032 0.004 3 0
2 0 1 0.02 0.022 4 1
3 0 2 0.043 0.03 2 0
4 1 0 0.027 0.028 3 1
5 1 3 0.009 0.328 2 1
6 1 4 0.04 0.001 5 0

• Collect a training corpus of (q,d,r) triples

score(q, d) = wT ⇥ [cosine, bm25, w, · · ·] + b

min
w,b

X

(q,d,r)

(r � score(q, d))2

Ranking is easier than regression

15

Pointwise -> pairwise learning to rank

16

score(q, d) = wT ⇥ [cosine, bm25, w, · · ·] + b

min
w,b

X

(q,d,r)

(r � score(q, d))2

Pointwise learning to rank:

Pairwise learning to rank (example):

si = wxi + b P (di � dj) =
1

1 + e��(si�sj)

min
⇥

X

i,j

[ri > rj] logP (di � dj)� (1� [ri � rj]) log (1� P (di � dj))�

Ranking based on machine learning algorithms

17

• SVMRank (Joachims et al. 2002)
• Ranking algorithm based on support vector machine

• Neural network: RankNet (Burges et al. 2006)

• Tree ensemble
• Random forests (Breiman and Schapire)
• Multi additive regression trees (Friedman, 1999)
• Gradient boosted decision tree (Burges 2010)

Yahoo! learning to rank challenges

18

• Yahoo! Webscope dataset : 36,251 queries, 883k documents, 700 features, 5
ranking levels
• Ratings: Perfect (navigational), Excellent, Good, Fair, Bad

• LambdaMART (Burges et al.) was the linear combination of 12 models:
• 8 Tree Ensembles (LambdaMART)
• 2 LambdaRank Neural Nets
• 2 MART models using logistic regression loss

Burges et al. Learning to Rank Using an Ensemble of Lambda-Gradient Models.

Regression tree

19

• Regression tree vs decision tree

decision tree regression tree

Regression tree

20slides from Stanford CS276

x^1 < v1

1.444 3.625

min
⇥

X

i

(yi � f(xi;⇥))2

x^1 > v3 x^2 < v4

v3

v4

2 1.5 3 4

Boosting in machine learning

21

• AdaBoost: using the ensemble of multiple
weak learners to build a high accuracy
classifier
• Weak learners = small decision trees

(1-split decision stumps)
• Weights for each learner and instance
• Instances are weighed on probability

it’s mistaken
• Learners are weighed on its accuracy

Gradient boosting regression tree

22

• Residuals

e = y � ŷ

= y � f(x; ✓)

· · ·
= y � f(x; ✓)� f 0(x; ✓)

Gradient boosting regression tree

23

residuals of square loss are just pseudo
gradients
(which is why it’s called gradient boosting)

min
w,b

X

(q,d,r)

(r � score(q, d))2

Gradient boosting regression tree example

24

• In the first iteration, f0(x) = mean value

f0(x)

2.471

minx5(1� x)2 + 4(2� x)2

+ 3(3� x)2 + 5(4� x)2

x =

Gradient boosting regression tree example

25

• After the second iteration, F(x) = f0(x) + f1(x)

f0(x)

2.471

f1(x)

x1 < v1

-1.027 1.154

minx5(1� 2.471� x)2

+4(2� 2.471� x)2

2.471� 1.027 = 1.444
2.471 + 1.154 = 3.625

minx3(3� 2.471� x)2

+5(4� 2.471� x)2

Gradient boosting regression tree example

26

• After the third iteration, F(x) = f0(x) + f1(x) + f2(x)

f1(x)

x2 < v2

-0.236 0.166

minx3(1� 1.444� x)2

+ 2(2� 1.444� x)2

+ 5(4� 3.625� x)2

minx2(1� 1.444� x)2

+ 2(2� 1.444� x)2

+ 3(3� 3.625� x)2

RankNet [Burges et al. 2010]

27

• Use si to denote the ranking function:

si = wxi + b P (di � dj) =
1

1 + e��(si�sj)

min
⇥

X

i,j

[ri > rj] logP (di � dj)� (1� [ri � rj]) log (1� P (di � dj))

• Plugging in the probability gives rise to:

min
⇥

X

i,j

Ci,j

Ci,j =
1

2
(1� Si,j)�(si � sj) + log (1 + e��(si�sj)), Si,j 2 {0,+1,�1}

�

Sij = 1 if di is more relevant than dj; –1 if the reverse, and
0 if the they have the same label

RankNet [Burges et al. 2010]

28

Ci,j =
1

2
(1� Si,j)�(si � sj) + log (1 + e��(si�sj)), Si,j 2 {0,+1,�1}

@Ci,j

@si
= �(

1

2
(1� Si,j)�

1

1 + e�(si�sj)
) = �@Ci,j

@sj

@Ci,j

@wk
=

@Ci,j

@si

@si
@wk

+
@Ci,j

@sj

@sj
@wk

= �(
1

2
(1� Si,j)�

1

1 + e�(si�sj)
)(

@si
@wk

� @sj
@wk

) = �i,j(
@si
@wk

� @sj
@wk

)

@⌃

@wk
=

X

i

@Ci,j

@wk
=

X

i

�i,j(
@si
@wk

� @sj
@wk

) =
X

i

(
X

j:{i,j}2I

�i,j �
X

l:{l,i}2I

�l,i)

�i

, j , j

@si
@wk

{i, j} in I: for all pairs of i, j in the data (both positive and negative)

LambdaRank

29

• RankNet: minimize the pairwise ranking error

• LambdaRank: minimize the pairwise ranking error, scale by the change in
NDCG

�i,j = �(
1

2
(1� Si,j)�

1

1 + e�(si�sj)
)

�i,j = � �

1 + e(�(si�sj)
|�NDCG|

LambdaMART [Burges et al. 2010]

30

• Lambdas are kind of “gradients” in RankNet
• In MART, with the specific lambda as gradients, we get:

• LambdaMART = LambdaRank + MART (gradient boosting)

XGBoost [Chen and Guestrin]

31

• State-of-the-art algorithm for gradient boosting

• Ingredients
• Regularization
• Gradient boosting
• Approximate greedy algorithm
• Weighted quantile sketch
• Sparsity aware split finding
• Parallel learning
• …

LTR: real world use

32

• Systems that currently used LambdaMART:
• Bing, search ads

• However:
• Machine learning was not heavily used in Google! (why?)
• Rule based systems are more interpretable and easy to debug:

https://www.quora.com/Why-is-machine-learning-used-heavily-for-Googles-ad-
ranking-and-less-for-their-search-ranking-What-led-to-this-difference

From Google's dominance in web search, it's fairly clear that the decision to
optimize for explainability and control over search result rankings has been
successful at allowing the team to iterate and improve rapidly on search
ranking quality

(answer from Quora, 2011)

LTR: real world use

33

• In 2015, Google introduced RankBrain, a query interpretability approach

• The 3rd important feature of Google

• Guessing game of what ambiguous queries mean
• Human: 70%
• RankBrain: 80%

Optimizing CTR for industry search engine

34

Boss: I have all the user click logs
(3 million records) for the last year,
implement an algorithm for improving
the click through rate for the next
quarter

Web search: how clicks happen

35

query =
“CIKM” (year =
2009)

Which websites
are most clicked?

• Relevance
• Context (location,

time)
• Personalization
• Other bias

User clicks as implicit feedback

36

• User clicks != explicit relevance judgment
• Position bias
• Exploratory search: clicks on A, not click on B does not always mean A is

more relevant than B
• Clicks are inconsistent

• User clicks ~ noisy relevance feedback
• Debias the feedback
• Processing user clicks for better quality
• Using comparative user feedback

Position bias

37

• Users always click higher ranked items, regardless of their (relative) relevance
•

Position bias modeling

38

• Hypothesis testing on user click models:

Hypothesis 1: Click probability is independent of position

Hypothesis 2: Click probability is a mixture model

Hypothesis 3: Click probability follows a cascade model

Craswell et al. An Experimental Comparison of Click Position-Bias Models. WSDM 2008

Position bias modeling

39

• Testing hypothesis using a small portion of users in a search engine
• query, A, B, m
• query, B, A, m

• There are four types of events:
• A clicked, B not clicked
• B clicked, A not clicked
• both A/B clicked
• neither A/B clicked

• Based on query,A,B,m’s result + hypothesis, estimate query, B,A,m’s result

Position bias modeling [Craswell 2009]

40

• Using cross entropy to examine hypothesis

• Cascade model has the lowest CE

Leveraging other user signals

41

• SAT clicks
• Clicks that are long enough (> 30 sec)

• Using eye tracking

Using comparative user feedback

42

clicked documents are more relevant than unclicked documents
(pairwise learning to rank)

Summary

43

• Web search with user feedback
• User clicks as implicit feedback
• Search engine position bias

• Learning to rank
• Regression tree
• Gradient boosting
• RankNet, LambdaRank, LambdaMART

• Real-world use of LambdaMART

