CS 589 Fall 2020
Language models

RNN/word embedding

Instructor: Susan Liu
TA: Huihui Liu

Stevens Institute of Technology

The majority of slides are adapted from Stanford CS224

Dense vector representation

car

latent semantic indexing
auto

>

Today’s lecture

« Language models
« Word2vec

« Recurrent neural network
* Vanilla recurrent neural network
* Long short-term memory (LSTM)
« Gated recurrent unit (GRU)

Language models

« Language modeling is the task of predicting what word comes next

0.3

0.01
« Given a sequence of words x1, x2, ..., xt, compute the probability distribution

for the next word xt+1

mary has a little

P($t+1\$17$2, T ,CL’t)

where xt+1 can be any word in the vocabulary v = {w;,--- ,wy}

Language models
« Using the chain rule to estimate the probability of text:

P(xl,...,xT):P(ZEl)XP(ZEQ|371)X'--XP(ZUT|ZBT_1,...,£U1)

T
= HP(wt | T4—1,...,21)
t=1

« Keyboard next word prediction:

e I'll meet you at the @ >

Language models

« Collect statistics about how frequent different n-grams are, and use these to
predict next word

* Unigram lanqguage model using MLE:

‘oz. - /_, Wednesday p(”taday is Wed”)
N — tod ” ” ” o0 ” ”
- 34 o = p("today”)p("is")p("Wed”) Table 1.
\ eigenvalue = 0.0002 x 0.001 x 0.000015 Mary 30
little 100
lamb 30

Mary little 5
little Mary 10
little lamb 25

« Bigram language model using MLE:

p(" Mary little lamb”) = p(” Mary”) x p("little” |” Mary”) x p(”lamb”|”little”) lamb little 0
30 5 25 Mary lamb 0
=760 "5 35 " 0.133 lamb Mary 0

little little 0
Mary Mary 0
lamb lamb §]

Language models

* Markov assumption: xt+1 depends only on the preceding k-1 words:

P(zerr | @y sw1) = P(®pgn | T4, Tpny2)
_ P(xt—}—laxtv" '7xt—n+2)
P (xta s 7xt—n—|—2)

 How do we get the n-gram statistics? By counting the n-grams in a large corpus
of text

« Sparsity problem with n-gram LM: what if “mary has a little” never occurred?
 Partial solution: just condition on “a little” instead
* Trade off between granularity and sparsity

Neural network

Output: a class label, a score, a word, ... output distribution

y = softmax(Uh + b)

backpropogation
(000 00000000000 hidden layer
embedding layer:
1. maps a 1-hot vector to low dim
representation
2. randomly initialized
T T T T 3. can be trained
car auto

Neural language models

« Bengio et al. (2000/2003): a neural probabilisitic LM using fixed window:

Improvements over n-gram LM:
1. No sparsity problem
2. Low storage cost

A

v

Remaining problems: (. 00000000 .)
1. Fixed window size too small —
2. Words at different positions use different 1%%4

weights, no symmetry

(e0®@ @00 000 o000)

T

mary has a little 9
1 I I3 L4

Recurrent neural network (RNN)

« Core idea: apply the same weights W repeatedly

output distribution 91 Y2 Y3 Ya
L 1%
§; = softmax (Uhy + by) € Rl ;',/1 T hQKI\ h3fI\ h4rI\
)
hidden state oW . QW @ \w,) O
hy =0 (Whhi—1 + Weer + b1) : : : :
\—/ \—/ \—/
Twe v fwe D
. O O O O
word embeddings el @ el @ es3l @ esl®@
e = Bt O O O O
word/one-hot vectors mary has a little
Ty € R|V|

10

Recurrent neural network (RNN)

« Core idea: apply the same weights W repeatedly

Y1 Y2 Y3 Ya
RNN advantage:
« Can process any length h, T h2i h3fI\ h4rI\
input)
« Model size doesn’t |V, (@ W, @ (W, O
increase for longer input O > @ > @ "®
S try b th
ey becasete @) © @ @
every timestep € LWG LWe KT\WQ
RNN disadvantage: O O O O
« Recurrent computation is €110 €200 €30 €110
slow O O O O
» Long distance problem T T 7 e
mary has a little

L]) 3 X4

11

Training an RNN language model

« Get a big corpus of text
« Feed into RNN-LM, compute output distribution yhat for every step t

« The loss function at step t is the cross entropy between the predicted probability
distribution ¥:, and the true next word ¥: orz; 1 :

Ji(0) = CE (Yo, it) = — > Ytwlog . = —10g .,
weV

« Minimize the average of the loss function over each word t:
T

T
1 1 .
J(0) = T § :Jt(e) — T § :_1Ogytaxt+1
t=1

t=1

12

Gradient descent

« We have a cost function J(#) we want to minimize

* There are a list of optimization algorithm (for both convex and non-convex
objectives), the most popular one is gradient descent (first-order optimization)

At each iteration, GD calculate gradient of ./ (), then take small step in direction
of negative gradient. Repeat

Cost
A

Learning step

Minimum

|
>
Random 8

initial value

13

D>

Gradient descent

« We have a cost function J(8) we want to minimize

« There are a list of optimization algorithm (for both convex and non-convex
objectives), the most popular one is gradient descent (first-order optimization)

« At each iteration, GD calculate gradient of J(8), then take small step in
direction of negative gradient. Repeat

prew — eold . QV@J(@)

N 0
old
06

9;1610 _ 6;;_)ld L J(@)

14

Training an RNN language model

* However, computing loss and gradients across entire corpus (i.e., gradient
descent) is too expensive

« Stochastic gradient descent allows us to compute gradients of a batch of
sentences and update weights

« Batch size matters: smaller batch size takes less memory, larger batch size
are memory consuming but converges faster

15

Generating text with an RNN language model
« You can train an RNN-LM on any kind of text, then generate in that style

 RNN trained on the first 4 Harry Porter books:

“Sorry,” Harry shouted, panicking

— “T’ll leave those brooms in London, are they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric,
carrying the last bit of treacle Charms, from Harry’s shoulder, and to
answer him the common room perched upon it, four arms held a
shining knob from when the spider hadn’t felt it seemed. He reached
the teams too.

source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803daé

RNN used in supervised learning

« Word tagging (use each y t)
* PoS tagging
 NER tagging

« Sentence classification (use the
last y_t or the average)

* sentiment classification
« text categorization

Y1

W,
>

A

)

O

O
U
17
O

O €2
9,

T

mary
L1

>
N

<>
(\V)]

>
Q
(7))

8
N

—0® o)—g»(oo ®)—

>
N

A 4

<

Q)

Q)
D

—»(.. .)—’(...)-’ =

little

17

Word embedding

In RNN, we randomly initialize the weight,
use the back propagation to update this
weight

The random initialization may not give us a
good starting point

We can choose a better starting point with
embedding vectors pertained in a large
corpus to help the initialization [Mikolov et
al. 13]

hy

Y1 Y2
[l
? W, 1@ |Wy
o '|©®
o (o
v
O @
o €210
% %
mary has
1 o

<
W

>

N
Ny
N

A 4

®
A

00 o)—%*(” ®)—

&
S

What makes a good word representation?

 Distributional semantics: A word’s meaning is given by the words that
frequently appear close-by

* “You shall know a word by the company it keeps” (J. R. Firth 1957)

...government debt problems turning into banking crises as happened in 20089...
...saying that Europe needs unified banking regulation to replace the hodgepodge...

...Indlia has just given its banking system a shot in the arm...

these contexts will represent “banking”

Word2vec Overview [Mikolov et al. 13]

« Maximizing the probability of the context words given w_t (Skipgram)

LOY=]1]]I Pwiss|ws0)

T
exp (uwt+j th>

Pwgyj | we) =

t=1m<j<m ZwEV exp (U, Vuw,)
T
1 1
J(0) = —TlogL(H) — 7 Z Z log P (wij | we;0)
t=1 m<j<m
P(We_z | we) P(Weyz | W)

problems turning crises as

\ . J \ y J \)

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Word embedding results

« Maximizing the probability of the context words given w_t (Skipgram)

words closest to “sweden”

ur
Word Cosine distance
norway 0.760124
denmark 0.715460 I |
finland 0.620022 oceh
switzerland ©.588132
belgium @.585835 |
netherlands 0.574631 .l Othree
iceland 0.562368
estonia 0.547621 22b
slovenia 0.5314808 i

Word embedding results

« Maximizing the probability of the context words given w_t (Skipgram)

T T | T T T T T T T T
051 r heiress 1
]
0.4+ ; E
!
: niece [* countess
03} *aunt | /" rduchess-
! ister ;!
] , ;!
0.2+ I ! , | rempress
|5 [il
| i : d =
0.1k ‘ I . rmadam ro |
| l / / /
I he“' ' ly
! nepHew / 4
oF | P | / / f .
| | ;A
: *woman p lord!
-0.1F : ' ear R
0.1 | uncle / rqueen’/
. . / /
! brother ! ' == {duke
-0.2F / ! —
, / T
/
I / | ‘emperor
-0.3 ‘. ; :
I / [
-0.4+ / \ 1
| {sir
05+ man lking -
1 1 1 | 1 | 1 L 1 | !

-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5

Skipgram with negative sampling

|t is computationally expensive to use all words for normalization

exp (v, v,)
Zwev exp (Ul vy,)
* In standard word2vec, implement negative sampling to improve the
performance

* Main idea: train binary logistic regressions for a true pair (center word and
word in its context window) versus several noise pairs (the center word
paired with a random word)

Pwiyj | we) =

Ji(0) = logo (v it) + ZEJNP(w) [loga('U,T'th):|

71=1

maximize prob that context word appears minimize prob that random words appear

Negative sampling
* How to select negative samples?

* The probability of selecting a word as a negative sample is related to its
frequency, with more frequent words being more likely to be selected as

negative samples

 |nstead of using the raw frequency, in the original word2vec paper, each
word is given a weight that's equal to it's frequency (word count) raised to the

3/4 power

freq (w;)*"

2 =0 (ffeq (wj)3/4)

P (w;) =

Sub sampling frequent words

« Two problems with frequent words such as “the”:

* When looking at word pairs that includes "the", e.g. ("fox", "the"), "the"
doesn't tell us much about the meaning of "fox", since it appears in the
context of pretty much every word.

* We will have more than enough samples of ("the", "the other word for the
word pair") than we need to learn a good vector for “the"

* For every word in the training set, there is a probability we discard it, keep
words with probabillity:

probability of keeping w; = (2w:) + 1) - 0.001z(w;)

Detecting phrases

« Phrases such as “san francisco” are much more meaningful than individual
words

* The rule used for detecting phrase is:

count(AB) — count,in
count(A) - count(B)

- N > threshold

Sub sampling frequent words

« Two problems with frequent words such as “the”:

* When looking at word pairs that includes "the", e.g. ("fox", "the"), "the"
doesn't tell us much about the meaning of "fox", since it appears in the
context of pretty much every word.

* We will have more than enough samples of ("the", "the other word for the
word pair") than we need to learn a good vector for “the"

* For every word in the training set, there is a probability we discard it, keep
words with probabillity:

probability of keeping w; = (2w:) + 1) - 0.001z(w;)

Count vs. prediction for word embedding

« Count-based methods:
« LSI

* Fast training

« Making efficient usage of
statistics

« Capture mostly word similarity
but not other patterns

* Disproportion of word
importance

Prediction-based methods:
« Skipgram/CBOW

* neural network probability
language model

e Scale with corpus size
 Inefficient usage of statistics

e Improved performance in
downstream tasks

e Can capture pattern beyond
word similarity

Encoding meaning in vector differences

Ratio of co-occurrence probability can encode meaning components

x = solid X = gas x = water x =random
P(a:|ice) large small large small
P(Q;‘steam) small large large small
Plalice) large small ~1 ~1
P(z|steam)

« Capturing the ratio using a bilinear model:

w; - wWy; = logP(z|j)

Encoding meaning in vector differences

« Ratio of co-occurrence probability can encode meaning components

%%
1
J(@) - 5 Z f(Pl'j)(’U?L‘j — 1og Pljj)Q*

N

reweighs the co-occurrence make the inner product similar to co-occurrence

« Capturing the ratio using a bilinear model:

w; - w; = log P(i|j) Wy - (W, —wp) = log

Encoding meaning in vector differences

« Ratio of co-occurrence probability can encode meaning components

x = solid X = gas x = water x = fashion
P(zlice) [1.9x10* |6.6x105 | 3.0x10° | 1.7x105
P(q;‘steam) 2.2x105 | 7.8x10%| 2.2x 1073 1.8 x 105
P(xlice
afice) 8.9 8.5x 1072 1.36 0.96
P(z|steam)

Summary of word embedding

Word embedding is designed for initializing the embedding layer of a neural
network

« Skipgram and CBOW train word embedding vectors by predicting the probability
of word generation from context words

« Training of word embedding vectors can be improved using negative sampling,
subsampling of frequent words, and detecting phrases

« GloVe improves word embedding by capturing other patterns

Vanishing gradient problem in RNN

0Jy Ohy 0Jy Oho

Ohy Ohy Ohy O

Vanishing gradient problem in RNN

 Recall: ht =0 (Whht—l + Wxﬂjt + bl)
« What if the sigma function is the identity function, i.e., o(x) =z ?

Ohy

= diag (¢! Wrhi—1 + Wy + b1)) W,
Oht—1

= IW; =Wy,

« Consider the gradient of loss in step i with respect to step j’'s hidden vector. If Wh
is small (large), the gradient gets exponentially small (large), causing the
vanishing (exploding) gradient problem:

oJ () 0J9(9) T Ohy

oh; Oh; Ziey O
0J () 0JD (@),
T O II wa= oh, h

Vanishing gradient problem in RNN

% _ % < 8J4 ; (9h2 8h3 « (9h4 (9J4 i
8hl 3h1 5‘h2 :8h1 (9h2 8h3 ha E

0Jy :0hy OJy:

_— >< _
ohi1 0hq ho gradient gets dominated by larger item

Example of vanishing gradient

« When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

 RNN needs to model the dependency between the first “ticket” and the word to fill
in the blank

 |f the gradient is too small, RNN cannot learn this dependency, makes it difficult to
tell between

* There’s no dependency between step t and t+n
* We have the wrong parameter to capture the dependency

Problem caused by exploding gradient

Exploding gradient: the similar problem as the vanishing gradient problem

prew — Hold . OéV@J(e)

Problem 1: we take a large step and reach a bad parameter position

Problem 2: resulting in Inf or NaN in your network (anyone has experienced this
problem?)

Solution 1: gradient clipping. Scale down the gradient if larger than a threshold

Long short term memory [Hochreiter & Schmidhuber 97]

« Solution to the vanishing gradient problem

 Attime t, there is a hidden state and a cell state
« Both vectors are of the same length
* The cell state stores long-term information
« LSTM can erase, read and write information from the cell

I
=R
© ® ©

Long short term memory [Hochreiter & Schmidhuber 97]

6t — tanh (Wcht—l + Ucﬂjt + bc)
¢t = Jfio0ci—1+10¢
h:; = os o tanh ¢;

IfiisOandfis 1, the
Controls what's forgotten from information is preserved

previous cell \ indefinitely
f = \/E(tht—l + UfZEt + bf)

t

Controls what part of new it =0 (W;hi_1 +U,zs + b;
content is written to cell — ()

Controls what part of new cell
is output to hidden state

Gated recurrent unit (GRU)

« A simplification of LSTM proposed by Cho et al. 2014

Controls what part of the ur = o (W. h Ui T b
hidden state is updated/ > (wlti=1 & e U)
Tt = O'(['i rht—l + Uy Xt + bT)

preserved
Controls what part of the /ﬁt = tanh (W, (r; o hy_1) + upxs + by)

previous state is used to ~
compute the new content hy = (1 — Ut) o hy_1 + ug o hy

Discussions

« Researchers have proposed many gated RNN variants, but LSTM and GRU are the
most widely-used

« With LSTM/GRU, gradient vanishing/explosion problem is alleviated but still exists

* Vanishing/exploding gradient is not just an RNN problem
* Due to chain rule, gradient can be vanishingly small as it back propagate

Residual neural networks [He et al. 2016]

« Adding direct connections:

Y

weight layer
F(x) "rew

weight layer

X
identity

 Makes deep network easier to train

Summary

« Neural language models can help with the sparsity problem of n-gram language
model

 RNN is better than NNLM because it can capture sequence of any lengths
« Word embedding can be used for improving the initialization of RNN

« RNN suffer from the vanishing gradient problem, the problem is alleviated using
LSTM/GRU

