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ABSTRACT

Mobile devices are ubiquitous. As of 2019, two-thirds of the world population own a

mobile phone. Mobile devices are indispensable for supporting billions of users’ information

access activities such as searching, browsing news, and shopping. Among those activities,

users may often need to make decisions when the mobile device is the only available channel

for their information access.

However, users’ mobile decision-making experience is hindered by the physical characteris-

tics of mobile devices: they are small and it is difficult to type on these devices. Furthermore,

both editing and navigation would be harder than that on computers. These characteristics

result in more difficulties for users to search, digest and compare information, which are the

necessary steps in the process of decision making.

Can we make it very easy for users to make decisions on mobile devices? In this disser-

tation, for the first time, we investigate the techniques for improving users’ mobile decision

making experience as a whole. We identify that the key to assisting user decision making

is through suggesting external knowledge to bridge their knowledge gap. To this end, we

propose to learn or mine such external knowledge from massive mobile-related data.

We investigate three important real-world decision-making problems on mobile devices:

mobile shopping decisions (Chapter 2), security decisions (Chapter 3 and Chapter 4), and

business decisions (Chapter 5). We bridge users’ knowledge gap in the following ways. In

the first problem, we leverage a search-engine log to expand the missing information in

user queries (Chapter 2); in the second problem, we leverage the Google Playstore meta-

data to retrieve explanatory information to directly address users’ confusion (Chapter 3 and

Chapter 4), finally, in the third problem, we leverage text-to-SQL data to generate SQL

from a natural language question, so that users can easily query the database using natural

language (Chapter 5). Our experimental results prove that massive mobile-related data

can be leveraged to effectively assist users’ mobile decision making by suggesting external

knowledge.
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CHAPTER 1: INTRODUCTION

With the rise of mobile devices, more than 70% of the world population now own mo-

bile devices. Users can easily carry these small devices on the go and perform different

information access activities such as searching for local restaurants, browsing news, replying

emails, learning new languages. Not only had mobile subscription overtaken that of desktop

in 2016 [1], but the mobile traffic in 2019 has surpassed that of desktop (and increasing)

including time spent per day [2], web traffic [2], search engine traffic [2], and sales [3]. As

a result, more and more users will be accessing information mainly through mobile devices.

Many of today’s startup companies take a mobile-first approach, i.e., they start building

their applications on mobile platforms first, and then move up to larger devices.

As a result, it is a critical task for business owners to make sure that the user experience

on mobile devices is friendly and users can effectively interact with the information needed

by them. In this dissertation, we investigate one problem in user interaction: users’ decision-

making tasks on mobile devices. Due to the large volume of mobile subscriptions, there exist

many cases where users need to make decisions and where their mobile phones are the only

devices available. For example, consider a user traveling without carrying her laptop (or no

Wi-Fi is available) and it happens to be the Amazon Prime day where many products are

on sale. With her mobile device, she can catch the deals right away without having to wait

for access to her laptop.

However, the physical characteristics of mobile devices determine the difficulties for users

to access information from the mobile devices. Mobile screens are small, making it more

difficult to type, edit, and navigate information. As a result, searching, digesting, and com-

paring information (being the ingredients of decision making) are all made more challenging.

Previous studies on mobile devices show that users often reformulate fewer queries [4] and

explore fewer items in the same session [5]. A study on mobile users’ shopping activities

shows that mobile devices are often where the users start reaching for a product first, and

yet they often end up buying it on their computers. The m-Commerce conversion rate is

also still less than that on desktops, although catching up [2].

The preceding statistics show that users’ decision-making activities are gradually shifting

from the desktop to the mobile platform, and yet it is still challenging for them to do so. Can

we make it very easy for users to make decisions on mobile devices? Indeed we cannot change

the physical characteristics of mobile devices. Alternatively, we can improve users’ decision-

making experience by providing more information needed by them for making the decision,

as user satisfaction in decision making is determined by how much information they know
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about the decision [6]. By pinpointing what information is needed by users, we can present

such information to users as the external knowledge for decision making. Consider again the

Amazon Prime day example. One question that users often have for shopping decisions is

“am I paying the cheapest price for certain features?” Regarding such a knowledge gap from

the users, we can present the price distribution under that feature as the external knowledge

to support the users’ decision making.

For what decision-making tasks do users lack such information? How to extract such

external knowledge? For the first question, we identify three specific problems where users’

mobile decision-making tasks are hindered by the lack of information: (1) users’ shopping

decisions, (2) users’ security decision, and (3) users’ business decision. For the second ques-

tion, we propose to extract such external knowledge from the massive mobile-related data

harvested from the web. The rapid growth of the mobile industry has given rise to large-

scale mobile data corpora and user-generated data (e.g., Google Playstore meta-data and

user search log through mobile devices). As a result, we can leverage data mining, ma-

chine learning, and information retrieval techniques to extract the external knowledge from

such large-scale datasets. In this dissertation, we argue that the massive and growing

mobile-related meta datasets as well as user-generated data can be leveraged

to computationally support user decision making by extracting such knowledge

from these datasets.

This chapter is organized as follows. Section 1.1 provides the definition for decision making

and decision-support system. Section 1.2 discusses the knowledge gap in decision-making

problems on mobile devices. Section 1.3 discusses how existing work bridges knowledge

gap. Section 1.4 identifies three unsolved problems in existing work and motivates the three

problems studied in this dissertation. Finally, Section 1.5 describes the organization of this

dissertation and summarizes each individual piece of work in the subsequent chapters.

1.1 DEFINITION OF DECISION MAKING AND DECISION-SUPPORT SYSTEMS

Definition 1.1 (Decision Making). Decision making is the activity for a user to interact

with information and software systems on her device, where the user has to choose from a set

of options, and the selection is related to the user’s personal benefit, e.g., money, security,

or a significant amount of time.

Under this definition, most user interactive activities within an information system (i.e.,

search engine or recommender system) fall within the scope of decision making. The only

activities that we do not consider as decisions are tasks where the interactions are fixed
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(a) Desktop showing search results and query suggestion at the same
time

(b) Mobile showing query
suggestion only

Figure 1.1: Knowledge gap by design: for the same query, while the desktop page displays
the search results and query expansion at the same time; in the mobile page, the query
expansion page overrides the search results; therefore, it is more difficult to edit the query
while referring to its contexts

and without any uncertainty, e.g., attaching a Photo to Tweet. In general, decision making

is a slow judgment process [7]. Different from fast judgment tasks such as visual object

recognition, speech recognition, a slow judgment process often involves complicated mental

models and user efforts in researching, exploration, learning new knowledge, and comparison.

For example, when making shopping decisions for a product that the users are unfamiliar

with, the users usually do not settle down on the first search result right away, but they

need to research information such as the price distribution for that product, what are the

most popular name brands, etc, before finalizing the decision.

Definition 1.2 (Decision-Support System). A decision-support system is any system that

provides external knowledge that helps users reduce the uncertainty in decision making.

An example of a decision-support system is the multi-faceted navigation system in e-

Commerce websites (Figure 2.2). As the system suggests external knowledge such as brands

of products, the user can spend less effort searching for what brands she needs. A decision-

support system is different from an automated decision-making system because instead of

making the decision for the user it assists the user by providing external knowledge, and let

the user make the decision herself.

1.2 THE KNOWLEDGE GAP IN USERS’ MOBILE DECISION MAKING

The knowledge gap of users’ mobile decision making can be caused by the following reasons:

The Knowledge Gap from Mobile Devices’ Characteristics. Mobile user interac-

tions are affected by the mobile device’s screen size, the difficulty in typing and the difficulty
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understanding permission requests. With typing difficulty, it is more difficult for users to

interact with search engines as in desktops. With smaller screens, it is more difficult for

users to navigate through the search results. Furthermore, the mobile interface determines

that it is difficult to put two pages on the same mobile screen; as a result, users cannot

complete her query while referring to other contextual information (Figure 1.1).

The Knowledge Gap in the Android Security System. The Android permission

system is the access control system over mobile apps’ access to users’ private data resources,

e.g., user location and contact list (Figure 3.1). Unfortunately, the design of the Android

permission system determines that mobile apps’ data usage is a blackbox to users. The

Android permission system uses a hierarchical structure to control apps’ access to users’

data (Figure 1.2) and users can only see which top-level permission groups are requested.

The same permission group may be requested because of multiple different fine-grained

purposes; however, the fine-grained API call is hidden from a user. Without knowing the

fine-grained purpose, the user can be confused about why exactly the permission is requested

and have concerns over their own data’s privacy, e.g., does a music app request the PHONE

permission group to only to pause music when receiving incoming calls or can it also make

calls at any time (which it should not)?

/ 55!1

read phone number

PHONE

READ_PHONE_STATE CALL_PHONE

make callspause music

11.3% Explanations for PHONE are Wrong

Figure 1.2: Android permission group [8]

The Knowledge Gap in Writing SQL Queries for Making Business Decisions.

Mobile business intelligence (BI) is a new area (less than 10 years). Surveys show that in

2017, 28% percent of BI users have mobile BI already in use in their company, with 23%

planning to use mobile BI in the next 12 months and 22% planning to do so in the long

term [9]. As of 2019, many mobile BI tools are in use. For example, Microsoft Power BI

introduced the iOS app in 2015. Similar to the desktop version, the mobile app also supports

the feature of natural language interface (Figure 5.1b). Due to the screen size as well as

the difficulty for users to write SQL queries, it is more convenient for users to perform data

analytics tasks with a natural language interface than using the database query language.
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1.3 HOW EXISTING SYSTEMS BRIDGE THE KNOWLEDGE GAP?

Existing (mobile) systems often assist users’ decision making by suggesting external knowl-

edge to users before the decisions need to be made. In the desktop search results, Google

often actively suggests related knowledge entries, e.g., if the user searches for a shopping-

related query, the search engine not only displays results that answer the query but also

related knowledge that goes beyond what is asked in the query, e.g., in response to the

query “how much a mattress box spring costs”, Google shows a list of related questions that

are often asked by other users (Figure 1.3a). The mobile search results are further diversi-

fied to include more knowledge entries. For example, the “interesting finds” (Figure 1.3b) is

displayed only in mobile search results [10].

(a) “People also ask” (both desktop and mobile)
(b) “Interesting finds” (mobile
only)

Figure 1.3: Google actively suggests knowledge entries to help users make decisions

1.3.1 Three Frequent Tasks for Suggesting External Knowledge

Among the activities for suggesting external knowledge for decision making, we identify

three frequent tasks. First, expanding the user’s keywords query . User queries are

often exploratory, i.e., when users are not clear about their fine-grained needs, they tend to

formulate coarser-grained queries to include more items in the search results [11]. Moreover,

due to the difficulty in typing, the user may have missed important information in their

natural language query. Therefore, the system can bridge the gap by completing the miss-

ing information in the user query. Second, retrieving natural language explanations .

When knowing the specific question that the user is confused about (i.e., the knowledge

gap), the system can directly address the user’s concern through providing a natural lan-

guage sentence as the explanation. Such an explanation may be retrieved from sentences
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User input System action Example sys-
tems

keywords query completing user query
search engine
query expansion
system
faceted naviga-
tion system

N/A providing a natural language sen-
tence to address user confusion

retrieval-based
question-
answering
system
Android permis-
sion rationale

natural
language
question

mapping natural language to pro-
gramming language

NLIDB
Wolfram Alpha
natural language
interface

Table 1.1: Existing systems for suggesting external knowledge to bridge the user’s knowledge
gap

in an existing corpus. Third, mapping the user’s natural language input to target

language . When the user needs to input information in the form of a formal program-

ming language and yet they are not familiar with its grammar, the system can bridge their

knowledge gap by mapping their natural language input to the programming language.

We briefly summarize existing systems for each of the three tasks (Table 1.1).

Search Engine Query Expansion System. Search engine users frequently submit

shorter queries than their actual information needs, e.g., the average length of AOL query

logs is 2 words [12]. Query expansion is widely applied in search engines [13], and experiments

show that query expansion leads to more satisfactory search results [14]. Existing approaches

expand queries by leveraging relevance feedback [15], ontology [16], mining query logs [17],

or gaze-based feedback [18].

Faceted Navigation System. Faceted navigation systems are critical for assisting users’

shopping decisions, and existing work using eye-trackers shows that users spend one-third

of the time in a search session looking at facets [11]. Similar to query expansion, faceted

navigation also aims to elicit the user’s fine-grained information needs, except that facets are

structured attributes rather than natural language queries. Most of existing work on faceted

navigational systems focus on two tasks: first, extracting structured facets from unstructured

natural language input such as product title, description, and user reviews [19–21]; second,
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re-ranking facet attributes and values to show more relevant facets on top [22–24].

Retrieval-based Question Answering Systems. The task of answer selection refers

to retrieving the most relevant answers from a list of candidate answer sentences (given the

user question as the input). Existing work on retrieval-based answer selection systems has

leveraged the learning-to-rank framework [25], translation-based retrieval model [26] and

neural network approaches [27].

Android Permission Rationale System. Android users are often confused by the

purpose of permission requests [28]. Such confusion is equivalent to seeking the answer

to one specific question: “why does app A request permission B?” [29, 30]. After the run-

time permission system (e.g., Figure 3.1) was introduced in Android 6.0 and later (Android

Marshmallow), apps often postpone their permission requests until the time the permission

is required by a certain functionality in order to proceed (i.e., compared to previous systems

where the permissions are requested upfront, e.g., requesting the CAMERA permission before

taking a picture). The new permission system thus allows the app to explain the permission

purpose within context, i.e. right before or after the functionality.

Natural Language to Programming Language Interface. A natural language to

programming language interface maps a natural language question to its corresponding logic

form in a specific programming language, which allows users who are not familiar with

the programming language to query a database or write short programs [31–34]. Among

the work in this direction, natural language to SQL has been studied for a long time and

successfully deployed in domain-specific question answering systems [31], while other work

has attempted to translate natural language into Python [32], regular expression [33], math

equations [34], etc. Figure 5.1b shows an example of natural language to SQL interface.

1.4 MOTIVATIONS FOR THREE MOBILE DECISION-MAKING PROBLEMS

By reviewing existing work on suggesting external knowledge to bridge user knowledge gap,

we identify three important research problems. In each research problem, either no existing

work has studied the problem, or the problem has been tackled and yet the performance is

not satisfactory.

Numerical Range Partition in the Faceted Navigation System. We identify that

one problem that has been neglected in existing faceted navigation systems is the numerical

range partition problem. Numerical facets such as price and screen size are prevalent among

database items and all types of business search engines (e.g., restaurant search, apartment

search), allowing users to specify their fine-grained information needs by limiting the lower

and upper bounds of numerical facets. Figure 2.2 shows the price-range suggestions from
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two shopping applications.

Although existing search engines often allow users to specify numerical ranges by them-

selves, new users may not be familiar with the numerical-facet distribution and as a result,

fail to specify the optimal ranges that could help them most efficiently navigate the database.

On the other hand, if the system actively recommends a list of numerical ranges to users,

they can conveniently select from the ranges to refine the query. However, not only had the

literature not addressed the numerical facet partition problem, but the numerical ranges in

existing search engines were not optimized. In fact, many of them showed a fixed range set

for different queries (Table 2.1). As a result, we propose to study the following research

question:

Research Question 1.1. How can we optimize the facet range results to assist mobile users’

shopping decisions?

Android Permission Rationale Suggestion. Although the new Android runtime per-

mission system makes it possible for apps to explain the fine-grained purpose for permission

requests, it is unclear whether the majority of Android apps have actually provided suffi-

cient explanations. Furthermore, if they have not optimized the explanations, can we assist

app developers to create or improve the permission explanations? We propose to study the

following two research questions:

Research Question 1.2. Have existing Android apps provided sufficient explanations for

permission purposes?

Research Question 1.3. How to suggest permission explanations to help app developers

create or improve the explanations?

Natural Language to Database Interface. Existing work on NLIDB has achieved

good accuracy when all the questions come from the same domain [35, 36]. Meanwhile, the

problem of cross-domain complex text-to-SQL generation [37] has not been well solved, as

the state-of-the-art approach [38] has achieved only 61.9% accuracy, which is undesirable

for being used in an actual system. As a result, we propose to study the following research

question:

Research Question 1.4. How to improve the performance of complex cross-domain text-

to-SQL generation?
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1.5 OVERVIEW OF THE DISSERTATION

In this dissertation, we show that massive data can be leveraged to assist user decision

making on mobile devices by suggesting external knowledge given the user’s natural language

input. To support this statement, we answer RQ 1.1-1.4 in Chapters 2-5 respectively:

• Chapter 2: Assisting Shopping Decision Making with Numerical Faceted

Search. We study the problem of assisting mobile users’ shopping decision making with a

keyword query as the input. Our system suggests a list of numerical ranges for a particular

facet (e.g., price) learned from a real-world search-engine log as the external knowledge. We

develop a machine learning algorithm that suggests numerical ranges given a query. First, we

propose an evaluation metric that evaluates the performance of a numerical range suggestion

algorithm (Section 2.4.2). Based on the proposed metric, we propose three optimization

algorithms by optimizing the metric directly (Section 2.5.1) as well as the upper bound of

the metric (Section 2.5.2).

/ 54!3

expand

keywords query

[0, $200] 
[$200, $400] 
[$400, infinity]

query log data

Figure 1.4: Chapter 2: Assisting user mobile shopping decision making

• Chapter 3: Empirical Study on Knowledge Support for Security Decision

Making. We conduct the first large-scale study on how effective existing Android permis-

sion rationales are in assisting mobile users with security decision making. Using sentence

classification techniques, we create a new dataset containing the explanation sentences by

mobile apps. We propose five research questions to evaluate the sufficiency of explanations.

Statistical significance tests show that generally, the decision support has not been sufficient

compared with the suggestions by Android developers’ documentation.

• Chapter 4: Recommending Explanation to Assist Security Decision Making.

After identifying the deficiency in mobile permission decision support, we propose a rec-

ommender system that can suggest a natural language permission explanation to help with

mobile security decisions. Given the app title and description, our system mines a large cor-

pus of the meta-data from 1.45 million Google Playstore apps. By leveraging information-

retrieval techniques and unsupervised truth-finding techniques, our recommender system
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can suggest highly relevant sentences to the true purpose of the app. Qualitative evaluation

demonstrates good interpretability in the suggested explanations.

/ 54!2

retrieve

app description, 
title, etc.

“stop the music when 
receiving incoming calls”

Googleplay meta-data

Figure 1.5: Chapter 4: Assisting user mobile security decision making

• Chapter 5: Assisting Business Decision Making with Natural Language to

SQL Interface. In this chapter, we study assisting mobile users in making business deci-

sions in data analytics platforms by suggesting an SQL query given their natural language

question as the input, where we leverage the Spider dataset [37] for the cross-domain com-

plex text-to-SQL generation as the data source. We review the state-of-the-art technique

namely IRNet [38] on Spider. By analyzing IRNet’s error cases, we find out that column

prediction error is the bottleneck. To improve the accuracy of column prediction, we pro-

pose two approaches: constrained decoding and column value matching. We observe a 4.7%

improvement in the exact matching accuracy (development set). Finally, we discuss future

directions for improving the accuracy.

/ 54!3

generate

natural language 
question

SELECT COUNT(*) FROM 
pet JOIN owner WHERE 
owner.age > 20

text-to-SQL data

Figure 1.6: Chapter 5: Assisting user mobile business decision making

In Chapter 6, we summarize the work in this dissertation, draw the conclusion, and propose

future work.
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CHAPTER 2: ASSISTING SHOPPING DECISION MAKING WITH
NUMERICAL FACETED SEARCH

2.1 OVERVIEW

Market statistics predict that by 2020, more than 53.9% sales will come from mobile

devices [3]. Although the trend shows that mobile commerce is overtaking desktop in the

near future, other numbers may reveal that users still prefer computers as the device for

decision making. The average conversion rate on mobile devices is still significantly lower

than that on desktops [39] (4.07 on desktop vs. 1.56 on mobile), although it is gradually

catching up. Meanwhile, it happens frequently that the user first sees some advertisements

on their mobile devices, becomes interested, starts researching, yet ends up buying the item

on the computer. Notably, users’ mobile shopping experience is hindered by the small screen

size, the difficulty in mobile search (Figure 1.1b), etc.

To bridge the gap in users’ mobile shopping decision making, m-Commerce applications

(e.g., Amazon and Walmart) often leverage the multi-faceted navigation system (Figure 2.2).

Facets are attribute values of structured items that belong to the same category in a database.

By restricting that items must satisfy certain facet values, users can investigate a subset of

items they are particularly interested in. For example, e-Commerce items often contain the

price facet, so that users can leverage the multi-faceted navigation system to submit struc-

tured queries such as SELECT * FROM laptop WHERE price < 200. Figure 2.2 shows the

faceted navigation systems from the Amazon and Google mobile applications, these systems

contain facets such as price, brand, average customer reviews, and condition. Researches

show that faceted navigation systems are critical in improving users’ decision-making ex-

perience. For example, after introducing the faceted navigation system, the e-Commerce

website buyakilt had more than 76% increase in sales and a 26% increase in conversion [40].

Facet values can be categorized into string values (e.g., brand) and numerical values (e.g.,

price). Most existing work focuses on improving the string values (i.e., extracting structured

facets from unstructured natural language input such as item titles, descriptions and user

review [19–21]). On the other hand, to the best of our knowledge, no existing work has

looked into the research problem of optimizing numerical facets in a faceted navigation

system. In fact, at the time our paper [41] was published, the price ranges in the majority of

the top-10 e-Commerce sites were somewhat suboptimal1. Table 2.1 summarizes the top-10

e-Commerce sites and the problems in their price ranges (back in 2017).

1The ranking of sites is based on the website traffic statistics from www.alexa.com as of 02/16/2017.
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website issue example query
amazon.com one range dom. refurbished laptop
ebay.com 3 ranges laptop; camera
walmart.com one range dom. socks
bestbuy.com one range dom. phone charger
etsy.com fixed ranges dress; hairpins
homedepot.com one range dom. french door fridge
target.com one range dom. card game
macys.com one range dom. soap
lowes.com one range dom. pillow
kohls.com one range dom. socks

Table 2.1: Issues of suggested price ranges among top-10 shopping websites (as of
02/16/2017).

Figure 2.1: A specific example of the ‘one range dominates’ issue (Table 2.1). The snapshot
was taken on 01/21/2016, on Amazon under query ‘refurbished laptop’.

In this chapter, we propose to first investigate how to optimize numerical facet ranges.

Before delving into the problem, we argue that this problem is not only prevalent but also

critical for improving existing search engines’ performance. First, numerical values exist

in almost all e-Commerce engines, such as price, ratings, and distance; second, numerical

values are easy to understand; third, certain numerical values such as price and salary

significantly affect users’ decisions. Furthermore, we argue that it is necessary to actively

suggest numerical ranges rather than relying on users to input these values. This is because

when buying items for the first time, users may not be familiar with the numerical facet

distribution, i.e., the knowledge gap between the user and the items in the database. By

actively suggesting numerical facets (e.g., Figure 2.2), users can efficiently choose from the

ranges while being educated of the facet distribution.

To solve the problem of optimizing the ranges, we first need to clearly define what is the

criterion for an optimal set of ranges. We follow the effort-based evaluation methodology

from related work [24, 42–44], and define the evaluation metric as the user’s browsing cost

before reaching a relevant item. Under the minimum-effort assumptions (Section 2.4.1), this
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(a)

/ 54!2

$0 to $500

$500 to $600

$600 to $700

$700 and above

laptop below 400       

(b)

/ 54!1

Figure 2.2: Left: Amazon’s price facets partition for query “laptop below 400 ” (non-adaptive
to query). Right: Google’s price facets partition for the same query (adaptive to query).

cost is equal to the rank of the first clicked item in the unique range that contains the item.

After defining the evaluation metric, we shift our focus to the optimization problem itself.

From examples in Figure 2.2 and Figure 2.1, we can observe that a good partition should (at

least) satisfy the following properties: first, being adaptable to each query; second, instead

of making one range dominate, the number of items in each range should be more balanced;

third, our partition algorithm should be able to generate any number of ranges, instead of

only one specific number like 3. There exists a simple solution that satisfies all the above

properties: just partition the results into k ranges so that each range contains the same

number of items. We call this simple method the quantile method. Indeed, the quantile

method reduces the maximum cost in Figure 2.1 from 1,426 to 321. But can we further

improve it?

By leveraging a two-month search log collected from www.walmart.com, we propose three

range-partition algorithms: first, we propose to partition the ranges by minimizing the

expectation of cost, where the probabilities come from the training log; second, we propose to

parameterize the problem, where the parameters are defined as the relative proportions of the

partition. We find that it is more efficient to minimize the upper bound of the cost function;
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third, we extend the second algorithm to make it even more adaptable. Experimental results

show that our method can significantly outperform the quantile method, which verifies that

learning is indeed helpful in the range partition problem.

This chapter is organized as follows. Section 2.2 introduces related work on multi-faceted

navigation system; Section 2.3 gives a formal definition of the numerical facet partition prob-

lem; Section 2.4 introduces our evaluation metric; Section 2.5 proposes three algorithms for

numerical facet range partition; Section 2.6 evaluates our algorithms and finally, Section 2.7

draws the conclusion.

This chapter makes the following contributions:

• We propose to first study the problem of numerical-facet range partition in the multi-

faceted navigation system;

• We propose an effort-based framework for evaluating and optimizing a numerical-facet

range partition algorithm;

• We propose three optimization algorithms by optimizing their time complexity and

accuracy;

• Experimental results show that our partition algorithm can effectively reduce users’

browsing cost;

2.2 RELATED WORK

Multi-Faceted Navigation Systems. Existing work on multi-faceted navigation system

focus on two problems: first, ranking facets based on their relevance to the query [23, 24,

45, 46]; second, extracting structured facets from unstructured natural language input such

as item titles, descriptions and user review [19–21]. Some system displays a ranked list

of facet [23] while others display a ranked list of (facet, value) pairs [22]. There are also

faceted systems which support image search [47] and personalized search [48]. To the best of

our knowledge, none of the existing work has addressed the research problem of suggesting

numerical ranges that are adaptable to the user queries.

Efforts-based Evaluation. It is a common practice to evaluate search engines using user

efforts [43,44,49,50]. For example, defining a system’s utilities as the difference between the

user’s gain and cost [42,50] or defining them separately [43,44]. The closest publications to

our work are [24] and [22], where the first approach defines their metric as the rank of the

relevant item after the user selects some facets; and the second approach defines it as the
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total number of items after selecting the facets. Our metric follows the first approach as it

better simulates the actual cost.

Assumptions on User Behaviors for Evaluation. Because users’ facets selections

are a series of operations that rely on each other, we are not able to know their actual

behaviors in an offline evaluation setting. Instead, we can leverage user-behavior assumptions

to simulate their actions, in the same way as the Cranfield experiment methodology [51].

Existing work [22–24] has made the following assumptions on user behaviors. Liberman et

al. [24] tests two assumptions against their data: (1) the user would (conjunctively) select all

facets that help to reduce the rank of the relevant document; (2) the user would select only

one facet that reduces the most of this rank. Basu Roy et al. [23] assumes the user would

follow the behavior they estimate from 20 users in a pilot study. Zhang et al. [52] assumes

the probability for the user to select each facet is proportional to the semantic similarity

between the facet and the relevant document. Unlike [52], our assumption in Section 2.4.1

relies only on the user’s discriminative knowledge on facet values, and unlike [24], we do not

make further assumptions on the user’s knowledge about data distribution. So our work

relaxes the assumptions made by previous works.

Generating Histograms. Our problem is remotely related to generating histograms for

database query optimization [53–55]. Different from our query adaptive ranges, histograms

are used for data compression so they are fixed for all queries. Same as our first method

(Section 2.5.1), Jagadish et al. [53] also leverage dynamic programming, although for a

different optimization goal. Recently, Acharya et al. [54] leverage an approximation technique

and replace DP with a linear time algorithm. However, this approximation technique is not

applicable in our case, simply because we have a different optimization goal.

2.3 FORMAL DEFINITION

We formally define the numerical range partition problem and introduce notations that

we will use throughout the rest of this chapter.

Suppose we have a working set of items E = {e1, · · · , e|E|} belonging to the same category.

Each item e ∈ E is a structured item containing one or multiple facets, including both string

facets and numerical facet. Some facets may be missing2. At each time t, after the user

submits a query qt, the search engine retrieves a ranked list of items Et ⊂ E. Our goal is to

partition one numerical facet v of each item e ∈ Et (e.g., v =price) using k − 1 separating

values St = (s1, · · · , sk−1) ∈ Rk−1, where s1 < · · · < sk−1. Here v(e) denotes the numerical

2For example, while some laptops have GPUs (thus GPU memory size is available), others do not
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facet of e. v must be shared by a significant portion of items in Et to make our algorithm

work.

Notice that in the above formulation, we have assumed that the number of output ranges

is fixed to k. k can be defined by either the system or the user. It is important to set the

number of ranges to a fixed number and compare range sets only if they share the range

number. It is unfair to compare two algorithms generating different numbers of ranges, e.g.,

it takes almost certainly less efforts to search with ranges S1=[0, 100), [100, 200), [200, 300),

[300, 400) than with S2 =[0, 200), [200, 400): any range in S1 is always a subset of one range

in S2, thus the browsing cost using S1 is certainly less than that of S2.

2.4 EVALUATION

In this section, we define our evaluation metric for a range partition algorithm by lever-

aging user-behavior assumptions.

2.4.1 User-Behavior Assumptions

Evaluation techniques in information retrieval are mainly divided into two categories:

first, online evaluation such as A/B test; second, offline evaluation through leveraging a user

search log. The second evaluation methodology depends on making certain assumptions

about the user behavior. For example, the Cranfield evaluation methodology [51] assumes

that when re-ranking items in a different order, users’ relevance judgments still stay the

same as in the original ranking result. Such an assumption overlooks the uncertainty in user

decisions; however, it largely simplifies the evaluation methodology thus is widely adopted

in the literature.

In this chapter, we follow a Cranfield-style evaluation methodology to evaluate the effec-

tiveness of a range set. To identify assumptions that facilitate offline evaluation, we consider

how a user will react when given the search results Et and the range set St. The user can

either use the range set to browse Et, or do not use the range set. A range partition algo-

rithm will only affect the user experience if she uses the range set. As a result, we assume

the user will first choose from one range, then browse the items within that range.

To evaluate the browsing cost, we need to make further assumptions about which range

the user will choose. Some ranges contain a relevant item, while others do no. If the user

chooses one that does not contain any relevant items, it is difficult to evaluate their browsing

cost, because they can abandon the range at a rank which we do not know from the search

log (while it is unrealistic to assume they browse all items in that range). To this end, we
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assume the user will always choose the range that contains the relevant item, because in

this way, we can further make the simple assumption that their browsing cost is equal to

the rank of the relevant item [56, 57]. The same assumption is also used in the existing

work of faceted search [24]. An alternative way of looking at this assumption is that users

have a coarse-grained knowledge regarding which facet range is more relevant, and they

can select the more relevant range even if they have not seen any items within that range.

Although this assumption puts a high requirement on the users’ prior knowledge in the data

distribution, it simplifies the evaluation methodology. Even though the defined browsing

cost may be less than the actual browsing cost, it can be used as an indicator to compare

against different partition algorithms.

Assumption 2.1. The user will select the range that contains the relevant item;

Assumption 2.2. After selecting the relevant range, the user will sequentially browse the

refined results until reaching relevant item;

We further make an assumption on the ranking results after filtering:

Assumption 2.3. The relative ranking between items does not change after the facet selec-

tion;

2.4.2 Evaluation Metric

With Assumption 2.1-2.3, we can define the evaluation metric for a range partition

algorithm as follows. At time t in the log, after the user enters query qt, the search engine

returns a ranked list Et of items. Suppose the user clicks on item et in the original log (when

she may or may not have selected any facets). Now if a range partition algorithm A had

suggested the ranges St = (s1, · · · , sk−1) for the query qt, we can evaluate algorithm A’s

performance using the averaged refined rank, or ARR in short:

RRt = Refined-Rank(et, Et, St) (2.1)

ARR =
1

T

T∑
t=1

RRt (2.2)

RRt and ARR will serve as the evaluation metric for all range partition algorithms

throughout this chapter.

Discussion on Modeling More than One Relevant Item. In the definition of RRt

and ARR, we consider only the first relevant/clicked item et in the search log. If there exist
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more than one clicked items, can we leverage the multiple items to improve the evaluation

methodology? The multiple clicks can be modeled as users’ gain during the search: the more

items they click, the more information they have obtained [44,58]. However, it is complicated

to model users’ browsing costs with more than one clicked item. If the two clicked items

occur in the same range, the browsing cost is unrelated to the rank of the higher-ranked

item in that range, while if they occur in two different ranges, it is related to the rank of

the higher-ranked item (because the total cost is the sum of the two ranks). As a result,

the two states may suddenly transit from one to another (i.e., from depending on the rank

of the first item to not depending on it) with a tiny perturbation in the partition boundary,

making it difficult to model the correlation between the input ranges and the output costs.

On the other hand, by modeling only one clicked item, there always exists one unique range

that contains the relevant item. In Figure 2.3, we show that by modeling one clicked item,

the browsing cost has a nice property which facilitates the discrete optimization algorithm

to find a more optimal point.

2.5 METHODS

After defining the evaluation metric for a numerical range partition algorithm, we look into

methods for optimizing the ranges. The simplest approach for partitioning the ranges is the

quantile method [55], i.e., partitioning Et into k equal-sized ranges. Despite its simplicity,

the quantile method performs reasonably well: Figure 2.1 displays the numerical ranges

suggested by Amazon for the query “refurbished laptop”, where one range contains 74% of

all items. By evenly partitioning the items, the ARR of the quantile method would be much

lower than that of the current ranges (if the relevant item is in the first range). But since the

quantile method does not leverage any extra information, one question is can we do better if

we can leverage extra information, e.g., by using historical search logs as the training data?

In this chapter, we explore two ways of using the training data.

2.5.1 Dynamic Programming

Our range partition algorithm should try to minimize the ARR and RRt. When suggesting

a set of ranges St, we do not know what the exact ARR will be (because the user has not

clicked on any items yet). Alternatively, we can suggest the ranges that minimize the

expectation of ARR. The expectation is estimated through the probability p(e) for the user
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to click on each item e ∈ Et (so that
∑

e∈Et p(e) = 1):

ES[RRt] =
∑
e∈Et

p(e)×Refined-Rank(e, Et, S) (2.3)

Our first method looks for the ranges St that minimizes ES[RRt]:

St = arg min
S∈Rk−1

ES[RRt] (2.4)

To select the optimal S from Rk−1, notice that although Rk−1 is continuous, we actually

only have to search for S within a discrete subspace of Rk−1: by sorting all the unique facet

values V = {v(e), e ∈ Et} in ascending order: v(e1) < v(e2) < · · · < v(e|V |), the optimization

problem 2.4 is equivalent to choosing k− 1 separating values from the |V | − 1 intervals. We

can leverage dynamic programming to solve the optimization problem in 2.4:

DP (v, κ) = min
S∈Rκ−1

v∑
ν=1

Refined-Rank(eν , E
t, S)× p(eν) (2.5)

DP (v, κ) = min
ν∈{1,··· ,v−1}

DP (ν, κ− 1)

+
v∑
i=ν

Refined-Rank(ei, E
t, S = [· · · , sκ−1])× p(ei) (2.6)

where the range S = [· · · , sκ−1] refers to a range whose last partition point is sκ−1, as the

latter part of Equation 2.6 does not depend on the previous κ− 2 partition points.

The Time Complexity of DP. The time complexity of our first approach is O(k|V |2 +

|V |3 log |V |) ≈ O(k|Et|2 + |Et|3 log |Et|), where the extra |V |3 log |V | is for sorting and pre-

computing the Refined-Rank for every e ∈ V in every possible range (the latter takes

quadratic time for choosing the left and right points from the |V | − 1 intervals). Notice the

bottleneck of this time complexity is not DP, but rather caching all the Refined-Rank’s. As

a result, any algorithms that optimizes Equation 2.4 would be of the same time complexity,

e.g., the greedy algorithm.

2.5.2 Learning to Partition the Ranges

Our evaluation shows that dynamic programming outperforms the quantile method in the

ARR (Table 2.3); however, the margin is small. How to further optimize the ARR? With

historical search logs as the training data, one way is to leverage machine learning, i.e.,

optimize the ARR in the training data subject to a set of parameters R, and apply R on
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the testing data.

How to define the parameters R? First, we cannot define R as the separating points

S = (s1, · · · , sk−1) of the numerical facet, because this would mean the ranges are non-

adaptive to queries. On the other hand, the quantile method performs reasonably well.

We can see that the quantile method uses one specific set of parameters for partitioning:

R = (r1, · · · , rk−1), where every rj = j/k (j = 1, · · · , k − 1), so that ∆rj = rj − rj−1 = 1/k

is the relative proportion of the number of items in the j-th range. In general, we can

search for the optimal R = (r1, · · · , rk−1) within the k−dimensional simplex space, i.e., any

0 < r1 < · · · < rk−1, r0 = 0 and rk = 1:

min
R∈∆k

T∑
t=1

Refined-Rank(et, Et, R) (2.7)

Mapping R to S. Given the search results Et, any relative proportion R can be mapped

back to its corresponding numerical facet values S, where the values in S are the separating

points such that the proportions of items in each range are the closest to R:

∆rj := rj − rj−1 ≈
|{e ∈ Et|v(e) ∈ [sj−1, sj)}|

|Et| (2.8)

Directly Optimizing the ARR with Respect to R

How to optimizeARR in Equation 2.7? Because the objective is discontinuous with respect

to R, we must leverage a discrete optimization algorithm, such as Powell’s method [59] and

Nelder-Mead [60].

Derivative-Free Optimization for the ARR. The discrete nature of the objective

function ARR determines we cannot leverage standard convex optimization algorithms.

Figure 2.3 displays how an upper bound of the ARR looks like in a two-dimensional space

(Section 2.5.2), clearly, it has a non-smooth and rugged shape. Optimization problems

as such can be solved through derivative-free algorithms, e.g., searching the landscape by

maintaining the values of a few test points (i.e., a simplex), exploring a new test point using

linear extrapolation, and replacing an old test point if the new objective function is smaller

(i.e., the Nelder-Mead method [60]). Another approach called Powell’s method performs

successive line searches in the directions of each of the k standard base vectors [59].

The Time Complexity to Directly Optimize the ARR. The time complexity for

directly optimizing ARR with a discrete optimization algorithm is O(NevalT1). As we will

see next, this time complexity is very large. Here T1 is the average time cost to compute
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the ARR at each point, and Neval is the number of ARRs we have to compute (i.e., the

number of function evaluations). That is, every time the optimization algorithm goes to a

new point R, we have to re-compute the ARR from scratch. This is because whenever we

are at a new point R ∈ ∆k, every RRt (Equation 2.2) could have changed thus we have

to re-compute every single RRt to get the new ARR. The only way to avoid re-computing

every new point is to cache all the Refined-Rank’s before the optimization, like what we did

in the first method (Section 2.5.1). However, as discussed in Section 2.5.1, caching requires

O(T |Et|3 log |Et|) which is even slower than O(NevalT1).

The exact time complexity for directly optimizing the ARR is analyzed as follows. In

the time complexity O(NevalT1), Neval depends on the convergence speed of the discrete

optimization algorithm, while T1 depends on the size of the training data. We can see from

Equation 2.2 that T1 = O(T × mlogm), where T is the number of queries in the training

data, and m = Avg(|Et|) is the average number of items in the search results for each

query qt. The log-linear complexity is for sorting items in the unique range containing

the relevant item to compute its Refined-Rank. Therefore, the total time complexity is

O(NevalTm logm). In a real-world search engine, both T and m can be very large, while

Neval usually ranges from 100 to 1,5003, making the optimization inefficient. Although we

can reduce this time complexity by randomly sampling the queries T , fewer training examples

could hurt the predicted ARR. Indeed, in Section 2.5.3 we propose a regression tree-based

approach, whose performance could benefit from more training samples at each leaf node.

Optimizing A Surrogate Objective Function

As discussed above, the algorithm for directly optimizing theARR takesO(Nevalnm logm),

which is time-consuming when Neval, n,m are all very large. Can we further optimize this

time complexity? In this section, we propose a surrogate function for ARR which is derived

from a three-step process. The time complexity for optimizing the surrogate function will

be significantly reduced compared with directly optimizing the ARR.

Step 1: Normalization. First, for each query qt, we normalize RRt by the total number

of retrieved items Et:

RRt =
RRt

|Et| =
Refined-Rank(et, Et, R)

|Et| (2.9)

3Neval for lower dimensional problems (k from 2 to 10) usually range from 100 to 1,500. Evaluation on
the empirical values for Neval in Nelder-Mead and Powell’s method can be found in Table 1-3 in [61] and
Table 2 in [62].
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Here Refined-Rank(et, Et, R) = Refined-Rank(et, Et, S), where the values in S are the

separating points mapped from R (i.e., Equation 2.8).

Step 2: Upper Bound. By definition (Section 2.4.2), Refined-Rank(et, Et, R) is

bounded by the total number of items in the unique range that contains the relevant item

et. We denote this unique range at time t as [sjt , sjt+1):

RRt ≤
|{e ∈ Et|v(e) ∈ [sjt , sjt+1)}|

|Et| (2.10)

Step 3: |Et| → ∞. As |Et| approaches infinity, the R.H.S. of Inequality 2.10 approaches

∆rj+1 = rj+1− rj. If we denote zt as the proportion of the number of items smaller than or

equal to v(et)4, this limit is rewritten as:

Ct(R) := ∆rjt+1 =
k∑
j=1

1[rj−1 ≤ zt ≤ rj]×∆rj (2.11)

By averaging Ct(R) over t = 1 · · · , T :

CT (R) =
1

T

T∑
t=1

Ct(R) (2.12)

=
k∑
j=1

∆rj × (FT (rj)− FT (rj−1)) (2.13)

Where FT (r) = 1
T

∑T
t=1 1[zt < r] for r ∈ [0, 1] is exactly equal to the empirical condi-

tional distribution function (CDF) of zt. Here the CDF function can be interpreted as: the

proportion of queries where the facet value v(et) of the clicked item is among the lowest r

proportion (sorted in ascending order of v) of all the items in the search result. Equation

2.13 follows from simple math.

Time Complexity to Optimize CT (R). The time cost for optimizing CT (R) is largely

reduced compared with directly optimizing the ARR. Essentially, the time complexity for

re-computing CT (R) at each new point no longer depends on the training data size T : we can

simply pre-compute the CDF function FT (r), and during optimization, query each FT (rj)

(which costs o(1)) to get CT (R), allowing the large Neval and T to be decoupled in the total

time complexity.

The exact time complexity of optimizing CT (R) is analyzed as follows. In Algorithm 2.1,

4For example: suppose Et contains only four items (ordered by rank): e1, e2, e3 and e4. v(e1) =
100, v(e2) = 300, v(e3) = 200, v(e4) = 400; relevant item is e2. In this example, zt = 3

4 .
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we have listed the algorithm for caching the CDF function FT (r). Because the CDF function

FT (r) is discrete (i.e., a histogram), we represent it using two parallel lists Zsorted and Y ,

where Zsorted contains the sorted values of all unique r’s where FT changes its value (so

|Zsorted| = T ), and Y contains the corresponding FT values of Zsorted (an example of FT (r)

is plotted in Figure 2.3). In Line 3-8 of Algorithm 2.1, we pre-compute zt for each query

qt, which takes O(Tm logm); in Line 9, we sort all unique zt’s which takes O(T log T ); in

Line 10-13, we cache Y for Zt, which takes O(T ). In summary, the total time complexity

for caching and optimization is O(Tm logm+ T log T +Nevalk log T ). As a result, this time

complexity is significantly lowered compared with that of direct optimization.

Algorithm 2.1: Caching Empirical CDF FT (r)

Input: Et, et, t = 1, · · · , T
Output: Zsorted, Y

1 Y ← []; // FT (rj) values of all unique r’s
2 Z ← []; // All zt’s
3 for t = 1, · · · , T do
4 Et

sorted ← Et sorted by v(e); // O(Tm logm)
5 jt ← Et

sorted.index(et); // O(T logm)
6 zt ← jt/|Et|;
7 Append zt to the end of Z;

8 end
9 Zsorted ← sorted(Z); // O(T log T )

10 for t = 1, · · · , T do
11 Append t/T to the end of Y ;
12 end
13 return Zsorted and Y ;

Bounds on CT (R)

The Dvoretzky-Kiefer-Wolfowitz inequality [63] bounds the probability that the empirical

CDF FT differs from the true distribution F . Following the DKW inequality, we are able

to prove a few bounds on CT (R), which show that as T goes to infinity, CT (R) will be

approaching its true distribution C(R), thus if the true distribution is smooth and convex,

our method will be optimizing an asymptotically smooth and convex function. These bounds

provide useful insights into the convergence rate and sample complexity of CT (R) on large

scale datasets. We show them in Section 2.8.
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2.5.3 Learning to Partition the Ranges with Regression Tree

In the previous few sections, we have proposed to parameterize the optimization of ARR

by using the fixed relative proportion R, which means all queries must share the same R. If

each query can have different R’s, can we further optimize the ARR?

Intuitively, the optimization of ARR can benefit from clustering, so that the R of some

queries are more similar to each other than others. For example, the R’s of refurbished laptop

and used laptop may be more similar compared with that of gaming laptop and high-end laptop,

how to integrate such clusterings within the optimization framework for ARR? We can rep-

resent each query qt using a feature vector xt ∈ RD, e.g., xt may be the low-dimensional

dense vector representation of qt or the user’s personalized feature. Thus the feature vector

of refurbished laptop would be similar to that of used laptop.

Next, we have two options for modeling the ARR using xt. First, each Rt is shared by at

least a subset of the queries; second, Rt is different from query to query, where the affinities

between queries are modeled by a function, e.g., Rt = W Txt + b. Comparing the two

approaches, the optimization in the second approach is much more difficult. Not only is the

objective function CT (W, b) non-derivative with respect to W and b, but the ∆rj’s defined

as such are different in each query so that we cannot pre-cache FT and quickly querying it

at the time of optimization.

The Regression Tree Algorithm. Due to the intractability of the second approach, we

propose to leverage the first approach for optimization, i.e., all the queries are divided into

clusters, and all queries in each cluster share the same R. How to find such clusters? The

closest clustering algorithm to solve our problem is the regression tree algorithm (CART [64]).

Regression tree is a tree-based approach for linear regression, and linear regression bears a

lot of similarities with optimizing CT (R) (which we will discuss next). In a regression tree,

all queries inside each leaf node n share the same parameter Rn. The training of a regression

tree is performed by recursively splitting the queries at the current node. At each node, it

searches for the dimension d ∈ [D] and the threshold θ such that splitting by whether xtd > θ

minimizes the sum of variance of both children of the node:

arg min
d,θ

1

|{t,xtd < θ}|
∑
t,xtd<θ

(yt − y<)2 +
1

|{t,xtd > θ}|
∑
t,xtd>θ

(yt − y>)2 (2.14)

Discussion on the Similarity between Optimizing CT (R) and Linear Regression.

Although CT (R) has a discrete objective function, Figure 2.3 shows that this function looks

quite similar to a quadratic function. In general, the landscape of CT (R) resembles an

“asymptotically smooth and convex” curve. Furthermore, when k = 2, by plugging in
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FT (r1) = r1 into Equation 2.13, we get CT (r1) = 2r2
1−2r1 +1, which is a quadratic function.

Inspired by the similarity between CT (R) and linear regression, we can optimize CT (R)

by splitting the node at xd
t > θ that minimizes the sum of the minimum CT (R) for both

children:

arg min
d,θ

min
R1

1

|{t,xtd < θ}|CT<,d,θ(R1) + min
R2

1

|{t,xtd > θ}|CT>,d,θ(R2) (2.15)

Here T<,d,θ and T>,d,θ denotes the subset of queries where xd < θ and xd > θ, respectively.

The Time Complexity for Splitting Using Equation 2.15. Searching for the d and

θ in Equation 2.15 requires O(Tm logm + DT (log T + T + Nevalk log T )), because for each

dimension d and each of the T threshold θ’s, we need to re-run Line 10-13 in Algorithm 2.1

for caching. This cost is huge when T is large. Can we optimize this time complexity for

splitting the node?

Following the discussions on the similarity between MSE and CT , we find that one alter-

native approach is to split based on the variance instead of CT :

arg min
d,θ

1

|{t,xtd < θ}|
∑
t,xtd<θ

(zt − z<)2 +
1

|{t,xtd > θ}|
∑
t,xtd>θ

(zt − z>)2 (2.16)

The Time Complexity for Splitting Using Equation 2.16. Searching with Equa-

tion 2.16 requiresO(DT+Tm logm+T log T+Nevalk log T ) (because we still have to compute

the CT (R) for both children), which is significantly faster than splitting using Equation 2.15

because the variance can be computed incrementally:

∑
t,xtd<θ

(zt − z<)2 =
∑
t,xtd<θ

zt
2 − 1

n
(
∑
t,xtd<θ

zt)2 (2.17)

Discussion on Equation 2.16’s effect over the ARR. Although the splitting crite-

rion 2.16 is not based on the minimum CT (R), to some extent, it might simulate the effect

of minimizing CT (R). Imagine two different splits on the same data. Suppose that in the

first split, the data is perfectly separated into two clusters; with the other split, however,

data is still well mixed. The former one would have a smaller sum of variance. It would

also have a smaller CT , because the R in each cluster is highly fitted within a small region.

In Figure 2.5, we compare the evaluation results of splitting using both Equation 2.15 and

Equation 2.16. While splitting using Equation 2.15 generally performs better, the improve-

ment is not significant under two of the three settings.

Minimum Cost-Complexity Pruning. An important step in the regression tree [64]
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is the minimal cost-complexity pruning because we need to decide at which node to stop

splitting. First, a full (over-fitted) tree is grown, then the algorithm goes through 5-fold cross

validation to select the optimal pruning for the fully-grown tree. In our later experiments,

we apply the same pruning strategy for Equation 2.15 and Equation 2.16, where we use the

0.5 SE rule to select the optimal tree.

2.5.4 The Time Complexity for Generating St and Rounding

The Time Complexity for Generating St. For each qt, the time complexity for our

dynamic programming method (Section 2.5.1) to generate St (Section 2.5.1) is O(k|Et|2 +

|Et|3 log |Et|). Our parameterization method (Section 2.5.2) and tree-based method (Sec-

tion 2.5.3) both take constant time to generate Rt, but the generated Rt still needs to be

converted back to St. There are two approaches to do this: first, sort Et by v(e), which takes

O(|Et| log |Et|); second, apply the k-th smallest element algorithm5, which takes O(k|Et|).
Notice we have to scan Et for at least one time anyway, so the quicksort method does not

induce extra time complexity with respect to |Et|.
Rounding. Finally, to make the separating points interpretable, we need to round the

original floating points in St to integers or larger units. The decision on which unit to round

to depends on the scale of the numerical facet as well as the decision context, such as the

user’s familiarity with the numerical facet. For example, when the user is very sensitive

to the price of certain items (e.g., flight tickets), she may feel comfortable reading more

fine-grained values; on the other hand, she may prefer larger units for less important facets

such as youtube view counts.

2.6 EXPERIMENTS

In this section, we conduct comparative experiments on the four methods discussed so

far to answer the following research questions: can the three of our proposed methods

(Section 2.5.1-Section 2.5.3) outperform the quantile method in terms of the ARR? Which

one of them works the best?

2.6.1 Dataset

Because no existing dataset exists for our problem, we have to build our own dataset. We

collect a two-month search log from www.walmart.com between 2015/10/22 and 2015/12/22.

5e.g., quickselect https://en.wikipedia.org/wiki/Quickselect
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We select the search logs from two categories: Laptop and TV, which are the two categories

with the largest traffic in the log. we determine the category of a query using the category

of the clicked item in the query. The records from our search log look like:

timestamp session id query facet click

235214 105002 laptop [[‘cond.’, ‘new’], [‘price’, ‘< $200’]]

viewed items clicked items

289, 54703, 70293, 175038, · · · , 4238 54703

Table 2.2: An example of the search log from the Walmart search engine

We pre-process the dataset as follows. First, we merge all queries in a session and treat

them as a single query, i.e., merging all the viewed items and clicked items. We use the first

timestamp as the timestamp of the merge query. If the user has reformulated her query in

the session, we use the first query. Second, we ignore the facet clicks. Third, we use the

first clicked item as the clicked item in the query, following our previous discussion that each

query has only one clicked item (Section 2.4.2).

Our dataset contains multiple numerical facets (e.g., screen size and memory capacity).

Besides Section 2.6.3, we mainly focus on evaluating the price facet in the following experi-

ments, because it has the largest coverage rate (more than 90% items have the price facet).

To simplify the experiments, we consider the price of each item as a fixed facet.

Separating the Training and Testing Data. For each category, we use the earlier 70%

queries as the training data and the latter 30% as the testing data (based on the timestamp

of each query). After the separation, Laptop contains 2,279 training queries and 491 testing

queries, while TV contains 4,026 training queries and 856 testing queries.

2.6.2 Experimental Results

We evaluate the ARR’s of the following four methods:

• quantile: for each query, the quantile method generates k ranges so that each range

contains the same number of items;

• dp: for each query, the dp method (Section 2.5.1) generates k ranges which optimize

the expected RRt (Equation 2.3) using dynamic programming;

• powell: for each query, the powell method (Section 2.5.2) first uses Powell’s method [59]

to find the parameter R by optimizing the CT (R) (Equation 2.13) on the training data,

then performs the partition by applying R to all queries in the testing data;
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• tree: for each query, the tree method first follows the steps in Section 2.5.3 to train

a regression tree using the splitting criterion 2.16 and the powell method, then apply

the tree to all queries in the testing data.

Among the four methods, quantile does not leverage any part of the training data;

powell and tree uses the training data for parameter estimation; while dp uses exactly the

same training data for estimating the click probability p(e)’s, so that we can fairly compare

the effectiveness between the training and non-training methods.

Main Results

Table 2.3 shows the ARR’s of the four methods. We can see that tree outperforms the

other three methods in all cases; powell and dp are next, with powell slightly better in

Laptop and dp slightly better in TV; quantile shows the worst performance in Laptop, and

it has a similar performance as powell in TV. Compared with the baseline quantile, tree

reduces the ARR by 16%-21% in Laptop.

In Table 2.3, we also show the results of statistical significance tests [65] between each

pair of methods in quantile, dp and tree. We skip the significance test on powell because

Table 2.3 shows tree always outperforms powell. From Table 2.3 we can see that the

significance results vary between Laptop and TV. In Laptop, tree significantly outperforms

the other methods; in TV, however, none of the results are significant. In addition, by

pair-wisely comparing each ARR’s of TV and Laptop, we can see that quantile and dp are

slightly better in TV, while powell and tree are significantly better in Laptop.

The above analysis indicates the learning-based approaches perform especially well on

Laptop. In TV, however, it looks like learning does not beat quantile by a large margin.

So what causes this difference?

Analysis of the Difference between TV vs. Laptop

To analyze the difference in TV, notice the learning-based approach searches the optimal

R ∈ ∆k, while the R in quantile is set to a fixed value. On the other hand, the ARR’s of the

learning-based approaches are close to that of quantile. The two facts indicate the optimal

R found by the learning-based approaches may end up being close to R = (1/k, · · · , 1/k).

To evaluate whether this hypothesis is true, in Figure 2.3, we plot the FT and CT curves (on

the training data) in the two-dimensional case for both Laptop and TV.

From Figure 2.3 we can observe that FT (r1) is very close to the identity curve FT (r1) = r1;

meanwhile, the optimal r1 in TV is indeed very close to 0.5. In other words, the quantile
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quant. dp powell tree

Laptop

k = 2 33.27 30.15 31.63 28.00
k = 3 22.07 21.22 19.95 17.62
k = 4 16.76 16.47 15.28 13.29
k = 5 13.55 13.43 11.94 10.72
k = 6 11.33 11.03 10.15 9.03

TV

k = 2 31.85 30.99 31.73 30.78
k = 3 21.30 20.88 21.43 20.75
k = 4 16.19 15.95 16.30 15.57
k = 5 13.08 12.83 13.18 12.62
k = 6 10.95 10.64 10.98 10.48

tree vs. dp tree vs. quant. dp vs. quant.
p t p t p t

Laptop

k = 2 0.32 -0.98 9e-3 -1.45 0.15 -1.45
k = 3 0.03 -2.18 5e-4 -3.50 0.61 -0.50
k = 4 0.02 -2.23 3e-4 -3.63 0.83 -0.20
k = 5 0.04 -2.05 3e-4 -3.65 0.92 -0.09
k = 6 0.04 -2.02 2e-4 -3.69 0.76 -0.29

TV

k = 2 0.89 -0.12 0.49 -0.68 0.60 -0.52
k = 3 0.89 -0.12 0.60 -0.51 0.69 -0.38
k = 4 0.63 -0.47 0.43 -0.78 0.76 -0.29
k = 5 0.75 -0.31 0.47 -0.72 0.70 -0.37
k = 6 0.76 -0.30 0.37 -0.89 0.57 -0.55

Table 2.3: Experimental results on the ARR of the four methods proposed in this paper.
The ARR metric can be interpreted as follows. When the number of partitioned ranges is 6,
on average, users need to read 11.33 items with quantile method; while they only need to
read 9.03 items with tree method. Here dp uses the training data of powell and tree to
estimate the click probability p(e)’s. We can observe that tree is significantly more effective
than dp while leveraging the same amount of training data.

method is already at a near-optimal R in the training data, so it is difficult for powell to

perform significantly better than quantile. Is quantile method also at a near-optimal R

in the testing data? To this end, we leverage the grid search to find out the true optimal

R in the testing data. We exhaustively enumerate the rj(j = 1, · · · , k − 1) over all the

different values which could make a difference in the ARR (i.e., all different values in Zsorted

in Algorithm 2.1). Because the time complexity of the exhaustive search is O(
(
T
k−1

)
), when

k > 4, it becomes intractable. We thus compute only the results for k ≤ 46 and show them in

6Although it seems we can replace the exhaustive search with Powell’s method, which is efficient thus
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Figure 2.3: The FT and CT for Laptop and TV when k = 2

k = 2 k = 3 k = 4
exhaustive 31.72 21.27 16.14
quantile 31.85 21.30 16.19

Table 2.4: The optimal ARR vs. quantile’s ARR for TV

Table 2.4 (exhaustive) in contrast to the ARR’s of the quantile method. From Table 2.4

we can see that quantile also almost achieves the optimal ARR in the testing data. On the

other hand, tree and dp can still perform better than quantile, because they are allowed

to have a different Rt for each query, although Table 2.3 shows that their improvements are

still limited.

In summary, Figure 2.3 can be interpreted as follows: when the click is significantly

biased towards lower-priced items (similar for other facets), the learning-based approaches

can significantly improve the ARR over non-learning approaches; on the other hand, if the

clicks are randomly distributed, the quantile method is almost optimal.

can be applied to k > 4; notice Powell’s method can not guarantee to find the global optimal like in the
exhaustive search.
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Figure 2.4: A comparison between the importance of different feature groups: the ARR for
k = 2, · · · , 6. Above: Laptop; below: TV

Comparative Study on Different Non-smooth Optimization Methods

In this section we compare the performance of different non-smooth optimization meth-

ods. We study five optimization algorithms. Besides the aforementioned 1) powell and 2)

nelder-mead, we also study the following methods from the scipy optimization library [66]:

3) cg: the conjugate gradient method in the non-smooth case; 4) bfgs: a second order

optimization method in the non-smooth case; and 5) slsqp: the sequential least-square

programming method.

For each algorithm, we run a 5-fold cross validation to tune its error tolerance parameter

ε as well as to find a good starting point. We report the ARR and running time of each

algorithm in Table 2.5, where each cell shows the average ARR and running time of each

method over 50 runs and over k = 2, · · · , 6. From Table 2.5 we can see that the five

algorithms have slightly different performances: slsqp has the best performance in Laptop
and powell has the best performance in TV. powell and nelder-mead has the largest time

cost, while bfgs is the fastest algorithm among all, likely because bfgs is a second-order

optimization method, while powell and nelder-mead do not search in the fastest direction.
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powell bfgs nelder cg slsqp

avg
ARR

L 17.77 17.58 17.78 17.60 17.50
T 18.70 18.76 18.74 19.06 18.76

time
L 0.024 0.007 0.028 0.012 0.027
T 0.022 0.008 0.026 0.009 0.009

Table 2.5: A comparison between different non-smooth optimization methods on the average
ARR and running time over 50 runs and over k = 2, · · · , 6.

Comparative Study on Regression Tree Features

In our regression tree method, we leverage the feature vector xt of each query qt to split

the training examples at each node. As a result, the performance of tree depends on what

feature vector xt we use. In this section, we evaluate the performance of three groups of

features and their combinations:

The Textual Features of qt: we use the latent semantic analysis (LSA) and the latent

Dirichlet allocation (LDA) to convert qt into its low-dimensional dense vector, where the

latent dimensions are both set to 20.

The Number of Explicitly Mentioned Facets in qt: we use the Stanford Named

Entity Recognizer (NER) to label the explicitly mentioned facets in each query. For example,

in the query ‘17-in refurbished laptop’, the explicitly mentioned facets are screen size=17

and condition=refurbished, as a result, the number of facets = 2. To extract the facets

from unstructured queries, we manually label 40% of the queries for training, and apply the

trained NER to the rest queries. We propose to leverage the number of mentioned facets

because intuitively when a user mentions more facets, it is more likely that she is looking

for a high-end product, as a result, she will likely click on a more expensive item, and vice

versa;

Quartile Absolute Values of Numerical Facets in Et: the quartile values are the

absolute values of the 1/4, 2/4 and 3/4-th partition points of Et. The intuition behind using

the quartile values is when retrieved items are all very expensive, the user may prefer the

relatively less expensive items;

We evaluate the performance of four combinations of the above features7: (1) LDA (di-

mension=20): using only the vector from LDA; (2) LDA + num (dimension=21): adding

the number of explicitly mentioned facets; (3) LDA + num + q (dimension=24): adding the

quartile absolute values; (4) LDA + num + q + LSA (dimension=44): adding the vector

from LSA. The comparative results of the four groups are shown in Figure 2.4. Figure 2.4

7In the comparative study on regression tree features, we always split on the variance (Equation 2.16)
and the non-smooth optimization method is fixed to Powell’s method.
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shows that the quartile absolute value features are the most helpful among all; the number

of explicitly mentioned facets do not help a lot; the LSA features also do not help the ARR,

actually it hurts the ARR in many cases, which can be explained by the fact that we already

have the LDA features.

Comparative Study on Regression Tree Splitting Criterion

In Section 2.5.3, we discuss the usage of two splitting criteria for building the regression

tree. The first criterion minimizes the sum of CT (R) on each side (Equation 2.15), while

the second criterion minimizes the variance of zt on each side (Equation 2.16). We use

nonsquare to denote the first criterion and use square to denote the second criterion. We

compare the ARR’s of nonsquare and square as follows. For each criterion, we look into

three different pruning strategies for a comprehensive evaluation: first, the fully grown tree

without pruning, denoted as full; second, the smallest tree after pruning, which contains

only the root node and two leaf nodes, denoted as min; third, the best ARR among all the

pruned trees and the fully grown tree, denoted as best 8.

For each pruning strategy, we conduct a statistical significance test between the ARR of

the two criteria. From Figure 2.5, we can see that the difference between the two criteria are

basically consistent over k = 2, · · · , 6. Although none of the p values are small enough to

show statistical significance, we can make the following observations: first, in the majority

cases, splitting using CT (Equation 2.15) performs better than splitting using the variance

(Equation 2.16); second, this advantage is not observed when the tree is fully grown; third,

splitting using CT has more advantages in Laptop than in TV. These observations are ex-

plained as follows: because nonsquare optimizes the CT which approximates the ARR, it

is expected to achieve a better ARR than square; for the same reason, its min should also

achieve a better performance. Meanwhile, by keeping following the same criterion of op-

timizing CT at every node, the fully grown tree may get so over-fitted that the parameter

estimation with just a small number of samples at each leaf node is less accurate.

Comparative Study on the Click Model p(e) for Dynamic Programming

The dynamic programming algorithm 2.4 leverages the estimated click probability p(e)’s

of each item e. As a result, the performance of dp depends on what model we use to estimate

p(e). In this section, we evaluate the performance of two models:

8In the comparative study for the splitting criterion, xt is fixed to LDA + num + q and the non-smooth
optimization method is fixed to Powell’s method.
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Figure 2.5: A comparison between the two different splitting criteria for the tree method:
the y-axis shows the p-value of the T-test between the ARR by minimizing the variance
(square) and minimizing CT (nonsquare). Above: Laptop; below: TV

k = 2 k = 3 k = 4 k = 5 k = 6

Laptop prr(e) 63.44 59.65 55.98 54.78 51.75
pmle(e) 30.15 21.22 16.47 13.43 11.03

TV prr(e) 61.78 60.42 59.39 58.29 57.16
pmle(e) 30.99 20.88 15.95 12.83 10.64

Table 2.6: The ARR of dp using prr(e) vs. pmle(e)

The MLE Click Probability. Our first model is a hybrid click model based on the

maximum likelihood estimation (MLE). The first part of the model is a query-item click

model pq(e), which is the probability that item e is clicked under the query string qt. But

because the query-item click model cannot be used to estimate clicks for unseen queries, we

need to smooth it using a coarser-grained click model, i.e., the category-item click model

pcate(e). The final click model is the linear interpolation of the query model and the category

model, where λ = 0.5:

pmle(e) = λpq(e) + (1− λ)pcate(e) (2.18)

pcate(e) ∝ #click(e, cate) (2.19)

pq(e) ∝ #click(e, q) (2.20)
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The Reciprocal Rank-based Probability. Alternatively, we can use the reciprocal

rank of item e to estimate its click probability under each query:

prr(e) ∝ 1/rank(e, qt) (2.21)

In Table 2.6, we compare the ARR’s using the two click models. We can see the MLE

model significantly outperforms the reciprocal rank model. Because the reciprocal rank

model does not leverage any training data, this comparison shows that leveraging the training

data largely improves the performance of our dynamic programming method.

2.6.3 Case Studies on the Output Numerical Facets

In Table 2.7-Table 2.14 we show some specific examples of the numerical facets output by

our algorithms. We can observe that the ranges are adaptable to each query. In particular,

the partition results on screen size are close to the mentioned screen size in the query

(Table 2.10), even though we have not explicitly parsed the query in our model. Overall,

Table 2.7-Table 2.14 shows that our range partition algorithm can generally be applied to

multiple facets.

60 inch tv 40 inch

tv

tv

mount

$0-$450 $0-$165 $0-$20

$450-$660 $165-$260 $20-$25

$660-$950 $260-$355 $25-$40

$950-$1200 $355-$540 $40-$75

$1200+ $540+ $75+

Table 2.7: price

laptop game lap-

top

refurb lap-

top

$0-$190 $0-$305 $0-$170

$190-$280 $305-$455 $170-$225

$280-$400 $455-$1050 $225-$280

$400-$690 $1040-$1450 $280-$370

$690+ $1450+ $370+

Table 2.8: price

DSLR

cam

polaroid

$0-$100 0-$35

$100-$460 $35-$75

$460-$640 $75-$125

$640-$980 $125-$160

$980+ $160+

Table 2.9: price

60-in

tv

40-in

tv

17-in lap-

top

tablet

0-55 ′′ 0-30 ′′ 0-13.5 ′′ 0-7.5 ′′

55-56 ′′ 30-40 ′′ 13.5-15.5 ′′ 7.5-8.5 ′′

56-61 ′′ 40-42 ′′ 15.5-16 ′′ 8.5-10 ′′

61-68 ′′ 42-47 ′′ 16-17.5 ′′ 10-10.5 ′′

68+ ′′ 47+ ′′ 17.5+ ′′ 10.5+ ′′

Table 2.10: screen size
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dig. cam cam 25x

zoom

0-1.5 x 0-3.5 x

1.5-4.5 x 3.5-12.5 x

4.5-8.5 x 12.5-24.5 x

8.5-21.5 x 24.5-36.5 x

21.5+ x 36.5+ x

Table 2.11: zoom

camcorder DSLR cam-

era

0-2.5 mp 0-16.5 mp

2.5-5.5 mp 16.5-18.5 mp

5.5-10.5 mp 18.5-23.5 mp

10.5-14.5 mp 23.5-24.5 mp

14.5+ mp 24.5+ mp

Table 2.12: mega-pixels

wm’s

clthes

wm’s plus sz clthes

size 0-6.5 size 0-13.5

size 6.5-8 size 13.5-16.5

size 8-9.5 size 16.5-20.5

size 9.5-13 size 20.5-24.5

size 13+ size 24.5+

Table 2.13: size

election day dogs

12/11/03 - 12/11/06 13/10/23 - 13/10/28

12/11/07 - 12/11/12 13/10/29 - 13/11/10

12/11/13 - 12/11/19 13/11/11 - 13/11/23

12/11/19 - 13/03/05 13/11/14 - 13/12/09

13/3/6 & later 13/12/10 & later

Table 2.14: durations

2.7 CONCLUSION

In this chapter, we study assisting mobile users’ shopping decision making through sug-

gesting a list of numerical ranges for a particular facet (e.g., price) learned from a real-world

search engine log. We introduce a new research problem of numerical facet range partition.

We propose an evaluation metric ARR based on the browsing cost for the user to navigate the

relevant items. Based on the evaluation metric, we propose three algorithms for optimizing

the ARR, including a dynamic programming method, and two methods that leverage ma-
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chine learning, where we have optimized the running time of each machine learning method.

Experimental results show that our learning-based methods can outperform the baseline by

16%-21%, it even significantly outperforms the dynamic programming method, even though

they leverage the same amount of training data. Our learning-based methods is robust and

efficient, so it can be directly applied to any search engine that supports numerical facets.

2.8 PROOF FOR THEOREMS

2.8.1 Bounds on CT (R)

We give the proofs for two theorems which provide some useful insights on the convergence

rate and sample complexity of the learning objective function in our second method (Equa-

tion (2.13)). Both theorems leverage the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [63]

and the following property:

Property 2.1. For any real value sequence x1, · · · , xT and y1, · · · , yT :

|
m∑
l=1

xlyl| ≤
m∑
l=1

|xl| ×max
l′
|yl′| (2.22)

Theorem 2.1. Given the query number T , suppose the relevant percentages z1, · · · , zT de-

fined in Section 2.3 are independent and identically distributed. Let FT denote their empirical

CDF:

FT (r) =
1

T

T∑
t=1

1[zt < r] (2.23)

and F denote the true CDF. Suppose CT is defined by Equation (2.13), and C is the true

function of CT :

C(R) =
k∑
j=1

∆rj × (F (rj)− F (rj−1)) (2.24)

If the number of ranges is set to k, we can prove that given a constant ε > 0:

P[sup
R
|CT (R)− C(R)| > ε] ≤ 2e−2Tε2/(k−1)2 (2.25)
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Proof. Using Property 2.3:

|CT (R)− C(R)| = |
k∑
j=0

(FT (rj)− F (rj))× (∆rj −∆rj+1)| (2.26)

≤
k∑
j=0

|FT (rj)− F (rj)| (2.27)

=
k−1∑
j=1

|FT (rj)− F (rj)| (2.28)

where ∆r0 = ∆rk+1 = 0. If supR |CT (R) − C(R)| > ε, denote arg maxR |CT (R) − C(R)| as

R0 = [r0
1, · · · , r0

k−1], therefore:

k−1∑
j=1

|FT (r0
j )− F (r0

j )| > ε (2.29)

For at least one these j’s we must have |FT (r0
j )− F (r0

j )| > ε
k−1

and thus supr∈(0,1) |FT (r)−
F (r)| > ε

k−1
, therefore

P[sup
R
|CT (R)− C(R)| > ε] (2.30)

≤ P[ sup
r∈(0,1)

|FT (r)− F (r)| > ε

k − 1
] (2.31)

DKW

≤ 2e−2Tε2/(k−1)2 (2.32)

Theorem 2.1 describes the convergence rate of CT (R) for any point in the simplex space

∆k. As k increases, bound (2.32) becomes looser. However, under certain setting, this bound

will not increase with k. We can show it with Theorem 2.2 and Theorem 2.3 as follows:

Theorem 2.2. Suppose we have the same setting as Theorem 2.1, but in addition, the true

CDF F is strongly concave. Denote arg minR C(R) as R∗ = [r∗1, · · · , r∗k−1], then the widths

of R∗ is monotonously non-decreasing:

∆r∗1 ≤ ∆r∗2 ≤ · · · ≤ ∆r∗k (2.33)

Proof. Since F is strongly concave, for any R and any pair of adjacent ranges [rj, rj+1) and

38



[rj+1, rj+2) in R, we have:

∆F (rj+2)

∆rj+2

<
∆F (rj+1)

∆rj+1

(2.34)

where ∆F (rj+1) = F (rj+1)− F (rj).

Given the optimal point R∗, now consider R′, which is same as R∗ except for replacing

r∗j+1 with (r∗j + r∗j+2)/2. Since R∗ is the optimal point:

C(R∗) ≤ C(R′) (2.35)

By canceling the same terms on the L.H.S. and R.H.S. of (2.35) we can get:

∆r∗j+1∆F (r∗j+1) + ∆r∗j+2∆F (r∗j+2) (2.36)

≤ ∆r∗j+1+∆r∗j+2

2
(∆F (r∗j+2) + ∆F (r∗j+1)) (2.37)

⇒ (∆r∗j+1 −∆r∗j+2)(∆F (r∗j+2)−∆F (r∗j+1)) ≥ 0 (2.38)

Suppose (2.33) is not true, and there exists a j such that ∆r∗j+2 < ∆r∗j+1. It follows from

(2.39) that ∆F (r∗j+2) < F (r∗j+1), therefore (∆r∗j+1 − ∆r∗j+2)(∆F (r∗j+2) − ∆F (r∗j+1)) < 0,

which contradicts with (2.38).

Theorem 2.3. Suppose we have the same setting as Theorem 2.1. In addition, the true

CDF F is strongly concave and R∗ = arg maxR C(R). Denote R∗ as a small enough region

near R∗ where (2.33) stays true, then for constant ε > 0:

P[ sup
R∈R∗

|CT (R)− C(R)| > ε] ≤ 2e−2Tε2 (2.39)

Proof. Following (2.33), for any [rj, rj+1) in R ∈ R∗, |∆rj −∆rj+1| = ∆rj+1 −∆rj. Using

Property 2.3:

sup
R
|CT (R)− C(R)| (2.40)

≤ sup
R

(∆rk −∆r1)×max
j
|FT (rj)− F (rj)| (2.41)

≤ sup
r∈(0,1)

|FT (r)− F (r)| (2.42)

Following DKW inequality we get (2.39).

We may combine the results in Theorem (2.1-2.3) with experimental results in Section 2.6
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and draw some conclusions. Recall that our second method achieves better experimental

results on the Laptop category than TV. From Figure 2.3, we can observe that the true CDF

of Laptop is strongly concave while that of TV is mostly linear. Meanwhile, Theorem 2.3

shows that when the true CDF is strongly concave, CT (R) also has better convergence rates.

The two results demonstrate some consistency between theoretical analysis and experimental

results.
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CHAPTER 3: AN EMPIRICAL STUDY ON THE KNOWLEDGE SUPPORT
FOR SECURITY DECISION MAKING

3.1 OVERVIEW

Mobile security and privacy are two challenging tasks [28, 67–72]. Android’ solution for

protecting the users’ private data resources mainly relies on its sandbox mechanism and

the permission system. Android permissions control the users’ private data resources, e.g.,

locations and contact lists. The permission system regulates an Android app to request

permissions, and the app users must grant these permissions before the app can get access

to the users’ sensitive data.

In the earlier versions of Android, permissions are requested at the installation time.

However, studies [28,70] show that the install-time requests cannot effectively warn the users

about potential security risks. The users are often not aware of the fact that permissions

are requested, and the users also have poor understandings on the meanings and purposes

of using the permissions [28, 73]. It is a critical task to educate the users by explaining

permission purposes so that the users can better understand the purposes [30,70,74].

Since Android 6.0 (Marshmallow), the permission system has been replaced by a new

system that requests permission groups [8] at runtime. An example snapshot of runtime-

permission-group requests is in Figure 3.1a, where Android shows the default permission-

requesting message for the permission group STORAGE1. The runtime model has three advan-

tages over the install-time model. (1) It gives the users more warnings than the install-time

model. (2) It allows the users to control an app’s privileges at the permission-group level.

(3) It gives apps the opportunity to embed their permission-group requests in contexts so

that the requests are self-explanatory. For example, in Figure 3.1a, a request for accessing

the user’s gallery is prompted when she is about to send a Tweet.

With the runtime-permission system, each Android app can leverage a dialog to provide

a customized message for explaining its unique purpose of using the permission group. In

Figure 3.1b, we show an example of such messages from the Facebook app for explaining

the purpose of requesting the user’s location: “Facebook uses this to make some features

work, help people find places and more.”. Such customized messages are called runtime-

permission-group rationales. Runtime-permission-group rationales are often displayed before

or after the permission-requesting messages or upon the starting of the app. In the rest of

1The permission-requesting message is the message displayed in the permission-requesting dialog (Fig-
ure 3.1a). For each permission group, this message is fixed across different apps. For example, the permission-
requesting message for STORAGE is Allow appname to access photos, media and files on your device?
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(a) (b)

Figure 3.1: Left: the default permission-requesting message for the permission group
STORAGE in Android. Right: A runtime-permission-group rationale provided by the app
for the permission group LOCATION.

this chapter, for simplicity, whenever the context refers to a runtime-permission-group ra-

tionale or a runtime-permission-group request, we use the term rationale, runtime rationale,

and permission-group rationale in short for runtime-permission-group rationale; we use the

term permission request(-ing message) in short for runtime-permission-group request(-ing

message).

We have mentioned that some permissions are self-explained in the context; why do we

need runtime rationales on top of that? There are three main reasons why a runtime rationale

is necessary. (1) The challenges in explaining background purposes. Although the

runtime system allows permission-group requests to be self-explanatory in contexts, there

exist cases where the permission groups are used in the background (e.g., read phone number,

SMS) [75]. As a result, there does not exist a user-aware context for asking such permission

groups. (2) The challenges in explaining non-straightforward purposes. When the

purpose of requesting a permission group is not straightforward, such as when the permission

group is not for achieving a primary functionality, the context itself may not be clear enough

to explain the purpose. For example, when the user is about to send a Tweet (Figure 3.1a),

she may not notice that the location permission group is requested. (3) Explanations

are helpful for improving user expectations. Prior work [70] shows that users find

the usage of a permission better meets their expectation when the purpose of using such

permission is explained with a natural language sentence. Furthermore, user studies [29] on

Apple’s iOS runtime-permission system also demonstrate that displaying runtime rationales

can effectively increase users’ approval rates.

The effectiveness of explaining permission purposes relies on the contents of the explana-
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tion sentences [70]. Because the rationale sentences are created by apps, the quality of such

rationales depends on how individual apps (developers) make decisions for providing ratio-

nales. Three essential decisions are (1) which permission group(s) the app should explain

the purposes for; (2) for each permission group, what words should be used for explaining

the permission group’s purpose; (3) how specific the explanation should be.

In this chapter, we seek to answer the following questions: (1) what are the common

decisions made by apps? (2) how are such decisions aligned with the goal of improving the

users’ understanding of permission-group purposes? To understand the general patterns of

apps’ permission-explaining behaviors, we conduct the first large-scale empirical study on

runtime rationales. We collect an Android 6.0+ dataset consisting of 83,244 apps. From

these apps, we obtain 115,558 rationale sentences. Our study focuses on the following five

research questions.

Research Question 3.1 (The Overall Explanation Frequencies). We investigate the overall

frequencies for apps to explain permission-group purposes with rationales. The result can

help us understand whether the developers generally acknowledge the usefulness of runtime

rationales, and whether the users are generally warned for the usages of different permission

groups.

Research Question 3.2 (The Explanation Frequencies for Non-Straightforward vs. Straight-

forward Purposes). Prior work [70, 76] finds that the users have different expectations for

different permission purposes. The Android developer guides [77] advises application devel-

opers to provide rationales whenever the permission group’s purposes are not straightforward.

Therefore, we investigate whether apps more frequently explain non-straightforward purposes

than straightforward ones. The result can help us understand the helpfulness of rationales

with the users’ understandings of permission-group purposes.

Research Question 3.3 (The Amount of Incorrect Rationales). We study the population

of rationales where the stated purpose is different from the true purpose, i.e., the rationales

are incorrect. Such a study is related to user expectations, because incorrect rationales may

confuse the users and mislead them into making the wrong security decisions.

Research Question 3.4 (The Specificity of Rationales). How exactly do apps explain the

purposes of requesting permission groups? How much information do rationales carry? Do

rationales provide more information than the permission-requesting message? Do apps pro-

vide more specific rationales for non-straightforward purposes than for straightforward pur-

poses?
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Research Question 3.5 (The Relations between Rationales and App Descriptions). Are

apps that provide rationales more likely to explain the same permission group’s purpose in

the app description than apps that do not provide rationales? Are the behaviors of explaining

a permission group’s purposes consistent in the app description and in rationales? Do more

apps explain their permission-group purposes in the app description than in rationales?

The rest of this chapter is organized as follows. Section 3.2 introduces the background

and related work, Section 3.3 describes the data collection process. Sections 3.4- 3.8 answer

RQ 3.1-RQ 3.5. Sections 3.9- 3.11 discuss threats to validity, implications, and the conclusion

of our study.

3.2 BACKGROUND AND RELATED WORK

Android Permissions and the Least-privilege Principle. A previous study [68]

shows that compared with attack-performing malware, a more prevalent problem in the

Android platform is the over-privilege issue of Android permissions: apps often request

more permissions than necessary. Felt et al. [28] evaluate 940 apps and find that one-third

of them are over-privileged. Existing work leverages static-analysis techniques [68, 78] and

dynamic-analysis techniques [67] to build tools for analyzing whether an app follows the

least-privilege principle. The runtime-permission-group rationales we study are for helping

the users make decisions on whether a permission-group request is over-privileged.

The Role of User Expectations in Mobile Security. Existing work shows that

Android security is strongly related to user expectations [30,69,70,79–84]. In particular, Lin

et al. [70] find that the users’ security concern for a permission depends on whether they can

expect the permission usage. Jing et al. [76] further find that even in the same app, users

have different expectations for different permissions. For example, in the Skype app, the

users find the microphone permission more straightforward than the location permission.

The Android developer guides [77] also points out this difference and advises application

developers to provide more runtime-permission-group rationales for purposes that are not

straightforward to expect.

Over the time, existing work leverage a suite of techniques to detect user expectation

requirements or to improve the interfaces towards meeting user expectations. One line of

work is on detecting the contradictions between the code behavior and the user interface [79,

85]. Researchers further design interfaces to enhance the users’ awareness of permission

usages [69,75,81–83,86], such as privacy nudging [69], access control gadget [83], and mapping

between permissions and UI components [86]. In particular, Nissenbaum et al. [81] describes
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user privacy as the contextual integrity ; i.e., whether or not a permission brings up privacy

concerns depend on the contexts [75,82,87,88]. The runtime-permission system incorporates

the contextual integrity by allowing apps to ask for permission groups within the context.

One line of work focus on using natural language sentences to represent or enhance the users’

expectation regarding the permission usages [30,70,80,89]. For example, Lin et al. [70] find

that the users are more comfortable with using the app when the app provides clarifications

for permission purposes than they do not provide such clarifications. Pandita et al. [30]

further extract permission-explaining sentences from app descriptions. Our study results

presented in Section 3.8 show that apps explain the purposes of requesting permission groups

more frequently in the rationales than in the description.

Runtime Permission Groups and Runtime Rationales. Since the launch of the

runtime-permission system, another line of work [29, 70, 90] (including our work) focus on

the runtime-permission system and the users’ decisions on such system. In particular, Bonne

et al. [90] conduct a study similar to the study by Lin et al. [70] under the runtime-permission

system, showing the users’ security decisions in the runtime system also rely on their ex-

pectations of the permission usages. The closest to our work is the study by Tan et al. [29]

on the effects of runtime rationales in the iOS system. Their user-study results show that

rationales can improve the users’ approval rates for permission requests and increase the

comfortableness for the users to use the app. Although they have not observed a significant

correlation between the rationale contents and the approval rates, such observations may be

due to the fact that only one fake app is examined with limited user feedback. As a result,

such unrelatedness cannot be trivially generalized to our case. Wijesekera et al. [91] redesigns

the timing of runtime prompts to reduce the satisficing and habituation issues [92–95]. Both

Wijesekera et al. [91] and Olejnik et al. [96] leverage machine learning techniques to reduce

user efforts in making decisions for permission requests.

3.3 DATA COLLECTION

3.3.1 Crawling Apps

Since the launch of Android 6.0, many apps have migrated to support the newer versions

of Android. To obtain as many Android 6.0+ apps as possible, we crawl apps from the

following two sources: (1) we crawl the top-500 apps in each category from the Google Play

store, obtaining 23,779 apps in total; (2) we crawl 482,591 apps from APKPure [97], which

is another app store with copied apps (same ID, same category, same description, etc.) from
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the Google Play store2. From the two sources, we collect 494,758 apps. Among these apps,

we find 83,244 apps that (1) contain version(s) under Android 6.0+; (2) request at least 1

out of the 9 dangerous permission groups (Table 3.1). We use these 83,244 apps as the study

subjects in this chapter3.

3.3.2 Annotating Permission-group Rationales

For each app found in the preceding step, we annotate and extract runtime rationales from

the app. Same as other static user interface texts, runtime rationales are stored in an app’s

./res/values/strings.xml file. Each line of this file is a string variable, which contains

the rationale’s name and the content of the rationale. The majority string variables are not

permission rationales, therefore, the task in this step is to extract rationales from a large

number of string variables.

The size of our dataset dictates that it is intractable to manually annotate all the string

variables. As a result, we leverage two automatic sentence-annotating techniques: (1) key-

word matching; (2) CNN sentence classifier. The automatic annotation is a two-step process.

Annotating Rationales for All Permission Groups. For the first step, we design

a keyword matching technique to annotate whether a string variable contains mentions

of a permission group. More specifically, we assign a binary label to each string variable

by matching the variable’s name or content against 18 keywords referring to permission

groups, including “permission”, “rationale”, and “toast”4. To estimate the recall of keyword

matching, we randomly sample 10 apps and inspect their string resource files. The result of

our inspection shows that such keyword matching found all the rationales in the 10 apps.

Annotating Rationales for the 8 Dangerous Permission Groups5. For the second

step, we use the CNN sentence classifier [99,100] to annotate the outputs from the first step.

The annotations indicate whether each rationale describes 1 of the 9 dangerous permission

groups [8]. The 9 permission groups contain 26 permissions. These permission groups’

protection levels are dangerous and the purposes of requesting these permission groups are

relatively straightforward for the users to understand. For each permission group, we train a

different CNN sentence classifier. We manually annotate 200∼700 rationales as the training

examples for each classifier. After applying CNN, we estimate the classifier’s false positive

2We are not able to collect all these apps from the Google Play store, due to its anti-theft protection that
limits the downloading scale.

3To the best of our knowledge, this dataset is the largest app collection on runtime rationales; it is orders
of magnitude larger than other runtime-rationale collections in existing work [29,75].

4The complete list of the 18 keywords can be found on our project website [98].
5We skip the BODY SENSORS permission group because it contains too few rationales.
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rate (FP) and false negative rate (FN) by inspecting 100 output examples in each permission

group. The average FP (FN) over the 8 permission groups is 5.1% (6.8%) and the maximum

FP (FN) is 13% (16%). In total, CNN annotates 115,558 rationales, which can be found on

our project’s website [98].

Discussion. One caveat of our data collection process is that the rationales in string

resource files are only the candidates for runtime prompts. That is, they may not be displayed

to the users. The reason why we do not study only the actually-displayed rationales is

that such a study relies on dynamic-analysis techniques, which limit the scale of our study

subjects.

3.4 RQ 3.1: THE OVERALL EXPLANATION FREQUENCIES

In the first step of our study, we investigate the proportion of apps that provide permission-

group rationales to answer RQ 3.1: how often do apps provide permission-group rationales?

For each of the 9 permission groups, we count how many apps in our dataset request the

permission group; we denote this value as #used apps. Among these apps, we further count

how many of them explain the requested permission group’s purposes with rationales; we

denote this value as #explained apps. Given the two values, we measure the explanation

proportion of a group of apps:

Definition 3.1 (Explanation proportion). Given a group of apps, its explanation propor-

tion of a permission group is the proportion of apps in that group to explain the purposes of

requesting the permission group, i.e., #explained apps / #used apps. We denote the expla-

nation proportion as %exp.

In Table 3.1, we show the values of #used apps, #explained apps, and %exp for each

permission group. In addition, we compute the %exp value for only the categorical top-500

apps; we denote this value as %exp (top).

Result Analysis. From Table 3.1 we can observe three findings. (1) Overall, 23.8% apps

provide runtime rationale. (2) The top-500 apps more frequently explain the purposes of

using permission groups than the overall apps do. (3) The purposes of the four permission

groups STORAGE, LOCATION, CAMERA, and MICROPHONE are more frequently explained than

the other five permission groups.

Finding Summary for RQ 3.1. 23.8% apps provide runtime rationales for their

permission-group requests. Among all the permission groups, four groups’ purposes are

explained more often than the other permission groups. This result may imply that app

developers are less familiar with the purposes of PHONE and CONTACTS.
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permgroup
#used #explain

%exp
%exp

apps -ed apps (top)

STORAGE 73,031 14,668 20.2% 28.3%
LOCATION 32,648 7,088 21.6% 30.7%
PHONE 31,198 2,070 6.7% 11.0%
CONTACTS 23,492 2,607 11.1% 17.7%
CAMERA 16,557 4,235 25.6% 37.7%
MICROPHONE 9,130 2,152 2 3.5% 28.0%
SMS 4,589 589 12.8% 16.0%
CALENDAR 2,492 357 14.2% 22.6%
BODY SENSORS 122 16 1 3.1% 15.4%
overall 83,244 19,879 23.8% 33.9%

Table 3.1: The number of the used apps (the #used apps column), the explained apps (the
#explained apps column), and the proportion of explained app in the used apps (the %exp
column). We sort the permission groups by #used apps.

3.5 RQ 3.2: THE EXPLANATION FREQUENCIES FOR NON-STRAIGHTFORWARD
VS. STRAIGHTFORWARD PURPOSES

In the second part of our study, we seek to quantitatively answer RQ 3.2: do apps provide

more rationales for non-straightforward permission-group purposes than for straightforward

permission-group purposes?

It is challenging to precisely measure the straightforwardness for why an individual ap-

plication requests a permission. The reason for the challenge is that whether or not a

permission looks straightforward relies on the user’s prior knowledge on the app, the per-

mission as well as the Android permission system. Alternatively, we can approximate the

straightforwardness as how frequently a permission is requested in a set of apps :

Definition 3.2 (Usage proportion). Given a set of apps, its usage proportion (denoted as

%use) of a permission group is the proportion of the apps (in this set) that request the

permission group.

Our approximation is based on the observation that the more often a permission group

is requested, the easier it is to understand the purpose of such requests. For example, in a

camera app, the users are more likely to understand the purpose of the camera permission

group than the location permission group [77]; meanwhile, our statistics show that while

71.4% of the camera apps request the CAMERA permission group, only 27.0% of them request

the LOCATION permission group.

To answer RQ 3.2, we first introduce the definitions of the primary permission group.
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(a) The usage proportions (%use)
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(b) The explain proportions (%exp)

S
T
O

R
A

G
E

LO
C

A
T
IO

N

P
H

O
N

E

C
O

N
T
A

C
T

C
A

M
E
R

A

M
IC

R
O

P
H

S
M

S

C
A

LE
N

D
A

o
ff

-D
ia

g

STORAGE

LOCATION

PHONE

CONTACT

CAMERA

MICROPH

SMS

CALENDA

off-Diag

0.32 0.25 0.07 0.14 0.22 0.31 0.22 0.14 0.24

0.25 0.32 0.09 0.12 0.25 0.20 0.12 0.14 0.21

0.18 0.24 0.24 0.20 0.15 0.18 0.08 0.07 0.19

0.26 0.20 0.18 0.26 0.23 0.19 0.08 0.29 0.24

0.31 0.38 0.06 0.10 0.28 0.33 0.00 0.09 0.22

0.32 0.29 0.19 0.19 0.25 0.18 0.15 0.17 0.25

0.16 0.08 0.17 0.21 0.09 0.15 0.17 0.00 0.15

0.18 0.19 0.13 0.14 0.19 0.18 0.08 0.22 0.19

0.25 0.24 0.10 0.15 0.23 0.24 0.11 0.15 0.21
0.00

0.06

0.12

0.18

0.24

0.30

Figure 3.2: The usage proportion (top) and the explanation proportion (bottom). Each row
is an app set and each column is a requested permission group.
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appset permgroup purpose %use #apps

file mgr STORAGE file managing 95.4% 499
video players STORAGE store video 96.6% 1,306
photography STORAGE store photos 99.7% 3,534

maps&navi LOCATION GPS navigation 92.6% 1,541
weather LOCATION local weather 95.4% 908

travel&local LOCATION local search 87.8% 2,647

lockscreen PHONE
answer call wh

-en screen locked
82.6% 425

voip call PHONE make calls 84.9% 847
caller id PHONE caller id 92.0% 175

caller id CONTACTS caller id 86.7% 196
mail CONTACTS auto complete 77.1% 140

contacts CONTACTS contacts backup 85.8% 259

flashlight CAMERA flashlight 96.6% 298
qrscan CAMERA qr scanner 88.4% 155
camera CAMERA selfie&camera 71.4% 749

recorder MIC voice recorder 75.7% 559
video chat MIC video chat 77.0% 139

sms SMS sms 60.4% 379
calendar CALEND calendar 36.0% 300

Table 3.2: The app sets for measuring the correlation between the usage proportion and the
explanation proportion. The apps in each set share the same purpose (the purpose column)
to use the primary permission group (the permgroup column) with the usage proportion
(the %use column).

Definition 3.3 (Primary Permission Group). If a set of apps all rely on (do not rely on)

one permission group to achieve their main functionality, we say that this permission group

is a primary (non-primary) permission group in this app set.

Under the above definition, the CAMERA permission is a primary permission group among

camera apps while LOCATION is a non-primary permission group.

To study the relation between the straightforwardness and the explanation frequencies, we

leverage the following three-step process. (1) For each permission group P , we use keyword

matching to identify 1∼3 app sets such that P is a primary permission group to these app

sets, e.g., the 3 app sets for STORAGE are: file managers, video players, and photography. (2)

For each permission group Q, we merge its 1∼3 app sets. (3) For each permission group P

and the primary app set for Q, we compute the proportion for app set Q to use or explain P ,

e.g., the frequencies for any file manager, etc. apps to use or explain any of the 8 permission
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STORAGE LOC PHONE CONTACT CAMERA MIC

r p r p r p r p r p r p
.4 8e-3 .6 1e-3 .5 6e-2 .8 1e-3 -.5 2e-2 .2 .5

Table 3.3: The Pearson correlation tests of each permission group, between the usage pro-
portion and the explanation proportion on the 35 Play-store app sets.

groups. As a result, we obtain two 8 by 8 matrices.

We display the two matrices in Figure 3.2 (and we display all the app sets in Table 3.2),

where each row is an app set and each column is a permission group. For each app set

(permission group), we also compute the average frequency over its off-diagonal elements

and show these values in an additional column (row) named off-Diag.

Discussions on Using the Primary Permission Groups. From Figure 3.2 we can

observe that the boundaries between straightforward and none-straightforward purposes can

be well defined based on the definition of primary vs. non-primary permission groups, which

facilitates our following analysis.

Result Analysis. We make the following observations from Figure 3.2b. (1) The di-

agonal elements are usually the largest among all the values in a row (column), i.e., the

more straightforward a permission looks like, the more frequently it is explained6. (2) By

comparing the elements in the off-Diag row, we find that the most frequently explained non-

straightforward permissions are STORAGE, LOCATION, CAMERA, and MICROPHONE. This result

is consistent with the overall explanation proportions in Table 3.1.

Measuring the Correlation Over All Apps. So far, we have measured the frequencies

using only a subset of apps. To conduct a more comprehensive study, we design a second

measurement study to capture all the Android 6.0+ apps. The second study follows the fol-

lowing steps. (1) We partition all apps into 35 sets based on the Google Playstore categories.

We discard SMS and CALENDAR because after the partition, they contain too few rationales

in each app set. (2) For each permission group, we compute its usage proportions and its

explanation proportions in the 35 app sets; we test the Pearson correlation coefficient [101]

between the usage proportions and explanation proportions lists. In Table 3.3, we show the

results of the Pearson tests. We can observe that 4 out of the 6 tests show that the two

values are significantly positively correlated, i.e., straightforward purposes are usually more

frequently explained. Such results resonate the results we have observed in the first study

(Figure 3.2b).

Finding Summary for RQ 3.2. Overall, apps have not provided more rationales for

6There exist a few exceptional cases in LOCATION, MICROPHONE, SMS, and CALENDAR where at least one
off-diagonal element is larger than the diagonal element
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non-straightforward purposes than for straightforward purposes. This result implies that

the majority apps have not followed the suggestions from the Android developer guides [77]

to explain non-straightforward permission-group purposes.

3.6 RQ 3.3: THE AMOUNT OF INCORRECT RATIONALES

In the third part of our study, we investigate the correctness of rationales. We seek to

answer RQ 3.3: does there exist a non-trivial proportion of runtime rationales where the

stated purposes are actually wrong?

It is challenging to derive an app’s true purpose for requesting a permission group. How-

ever, we can use the lower-level permission inside a permission group to define an app’s

coarse-grained purpose. The lower-level permissions in Android 6.0 are:

PHONE

CALL PHONE

READ CALL LOG

READ PHONE STATE

WRITE CALL LOG

READ PHONE NUMBERS

ANSWER PHONE CALLS

ADD VOICEMAIL

USE SIP

SMS

SEND SMS

RECEIVE SMS

READ SMS

RECEIVE WAP PUSH

RECEIVE MMS

CONTACTS

READ CONTACTS

WRITE CONTACTS

GET ACCOUNTS

STORAGE
READ EXTERNAL STORAGE

WRITE EXTERNAL STORAGE

CALENDAR
READ CALENDAR

WRITE CALENDAR

LOCATION
ACCESS FINE LOCATION

ACCESS COARSE LOCATION

CAMERA CAMERA

RECORD AUDIO RECORD AUDIO

BODY SENSORS BODY SENSORS

Table 3.4: Android 6.0 permission groups

Among the 9 permission groups above, 6 groups contain more than one permissions [8].
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For example, the PHONE permission group controls the access to phone-call-related sensitive

resources and this permission group contains 9 phone-call-related permissions: CALL PHONE,

READ CALL LOG, READ PHONE STATE, etc. By examining whether the app requests READ CALL LOG

or READ PHONE STATE, we can differentiate between the purposes of reading the user’s call

logs and accessing the user’s phone number.

In order to easily identify the mismatches between the stated purpose and the true pur-

pose, we study 3 permission groups consisting of relatively diverse permissions: PHONE,

CONTACTS, and LOCATION. In particular, each of the 3 groups contains 1 permission that

are requested by more than 90% apps (that request the permission group); therefore, we

name such permissions the basic permissions of their permission groups. The basic per-

missions of PHONE, CONTACTS, and LOCATION are READ PHONE STATE, GET ACCOUNTS, and

ACCESS COARSE LOCATION, respectively.

Definition 3.4 (Apps with Incorrect Rationales). We say an app contains an incorrect

rationale if one of the following is true: (1) all the rationales state that the app requests only

the basic permission, but the app has requested at least one other non-basic permissions; (2)

the app requests only the basic permission, but some rationales state that it has requested

non-basic permissions.

If an app states an incorrect rationale, the user can be misguided into making the wrong

decisions. For case (1), the user may grant the permission-group request with the belief that

she has granted only the basic permission, but in fact she has granted other permissions. For

case (2), the user may deny a legitimate permission-group request just because the stated

purpose seems unrelated to the app’s functionality. For example, when a music player app

requests the READ PHONE STATE permission only to pause the music when receiving phone

calls, the rationale can raise the user’s security concern by stating that the music app needs

to make a phone call. After the user denies the phone permission group, the app also loses

access to pausing the music.

To study the populations of the two preceding incorrect cases, we leverage the afore-

mentioned CNN sentence classifier [99]. We classify each runtime rationale into one of the

following three classes: (a) the rationale states the purpose of requesting a basic permission;

(b) the rationale states the purpose of requesting a non-basic permission; (c) neither (a) nor

(b). For each of the three permission groups, we manually annotate 600∼900 rationales as

the training data. After we obtain the predicted labels, we manually judge the resulting

rationales that are predicted as (a) or (b) to make sure that there do not exist false positive

annotations for incorrect case (1) or (2). In Table 3.5, we show the lower-bound estimations

(#err and %err) of the two incorrect cases’ populations. We also show the detailed criteria
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CONTACTS PHONE LOCATION

annotate
criterion

basic per
-mission
class (a)

google
account/
sign in/

email add
dress

pause inc
oming call/
imei/ ident

ity/ number/
cellular

coarse loc
/area/region
/approximate

/beacon
/country

other per-
missions
class (b)

contacts/
friends/

phonebook

make call/
call phone/

call logs

driving/
fine loc/

coordinate

incorrect
apps

case (1)
#err %err #err %err #err %err
93 4.6 139 11.3 9 0.1

case (2)
#err %err #err %err #err %err
76 1 3.2 37 4.2 3 0.6

Table 3.5: The upper table shows the criteria for annotating the basic permission and other
permissions in the same permission group. The lower table shows the estimated lower bounds
on the numbers of apps containing incorrectly stated rationales.

of our annotations for (a) and (b). The list of incorrect rationales and their apps can be

found on our project website [98].

Result Analysis. From Table 3.5 we can observe that there exist a significant proportion

of incorrectly stated runtime rationales, especially in the incorrect case (1) of the phone

permission group and the incorrect case (2) of the contacts permission group. In contrast,

there exist fewer incorrect cases in the location permission group. The reason for the location

permission group to contain fewer incorrect cases may be that the majority of apps claim

only the usage of location, without specifying whether the requested location is fine or coarse.

The contacts and phone permission groups contain more diverse purposes than the location

group, and our study results show that a significant proportion of apps requesting the two

groups state the wrong purposes. For example, a significant number of FM radio apps state

that they only need to use the phone state to pause the radio when receiving incoming

calls; however, these apps have also requested the CALL PHONE permission, indicating that if

the user grants the permission group, these apps also gain the access to making phone calls

within the app.

Finding Summary for RQ 3.3. There exist a significant proportion of incorrect runtime

rationales for the CONTACTS and the PHONE permission groups. This result implies that apps

may have confused the users by stating the incorrect permission-group purposes for PHONE

and CONTACTS.

54



st
or

ag
e

lo
ca

te

co
n
ta

ct

p
h

on
e

ca
m

m
ic

0

0.2

0.4

0.6

0.8

1

primary
permission
group

non-primary
permission
group

overall

Figure 3.3: The proportions of non-redundant rationales.

3.7 RQ 3.4: THE SPECIFICITY OF RATIONALES

In the fourth part of our study, we look into how specific are the existing rationales.

In particular, we seek to answer RQ 3.4: do rationales (e.g., the rationale in Figure 3.1b:

“Facebook uses this to make some features work, help people fine places and more”) provide

more specific information than the system-provided permission-requesting messages (e.g.,

the message in Figure 3.1a: “Allow Facebook to access your location?”)?

Definition 3.5 (Redundant Rationales). If a runtime rationale states only the fact that the

app is requesting the permission group, i.e., it does not provide more fine-grained information

than the permission-requesting message, we say that the rationale is redundant and otherwise

non-redundant.

Among all the runtime rationales, how many are non-redundant ones? Does this propor-

tion vary across different permission groups?

To study the population of non-redundant rationales, we leverage the named entity tag-

ging (NER) technique [102]. We leverage NER based on the observation that non-redundant

rationales usually use some words to state the fine-grained purpose beyond the fact of using

the permission group. Moreover, these purpose-stating words usually appear in textual pat-

terns. As a result, we can leverage such textual patterns to detect non-redundant rationales.

For example, in the following rationale, the words tagged with “S” explain the specific pur-

pose of using the permission group PHONE, and the words tagged with O are other words:

“this O radio O application O would O like O to O use O the O phone O permission O to S

pause S the S radio S when S receiving S incoming S calls S”. We train a different NER

tagger for each of the top-6 permission groups in Table 3.17. For each permission group, we

7We skip SMS and CALENDAR, because they both contain too few rationales for estimating the proportions
of non-redundant rationales.
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manually annotate 200∼1,000 training examples. To evaluate the performance of our NER

tagger, we randomly sample 100 rationales from NER’s output for each permission group and

manually judge these sampled rationales. Our judgment results show that NER’s prediction

accuracy ranges from 85% to 94%. The lists of redundant and non-redundant rationales

tagged by NER can be found on our project website [98]. Next, we obtain the proportions of

non-redundant rationales in each permission group. We plot these proportions in Figure 3.3.

Result Analysis. We can observe three findings from Figure 3.3 and additional exper-

iments. (1) The proportions of redundant runtime rationales range from 23% to 77%. (2)

While the two permission groups PHONE and CONTACTS have the lowest explanation propor-

tions (Figure 3.2), they have the highest non-redundant proportions. The reason why most

PHONE and CONTACTS rationales are non-redundant is that they usually specify whether the

permission group is used for the basic permission or other permissions (Section 3.6). (3) We

also study the proportions of non-redundant rationales in the app sets defined in Table 3.2,

but we have not observed a significant correlation between the usage proportions and the

non-redundant proportions.

Finding Summary for RQ 3.4. A large proportion of the runtime rationales have not

provided more specific information than the permission-requesting messages. The rationales

in PHONE and CONTACTS are most likely to explain more specific purposes than the permission-

requesting messages. This result implies that a large proportion of the rationales are either

unnecessary or should be more specifically explained.

3.8 RQ 3.5: THE RELATIONS BETWEEN RATIONALES AND APP DESCRIPTIONS

In the fifth part of our study, we look into the correlation between the runtime rationales

and the app description. We seek to answer RQ 3.5: how does explaining a permission

group’s purposes in the runtime rationales relate to explaining the same permission group’s

purposes in the app description? Are apps that provide rationales more likely to explain the

(same permission group’s) purposes in the app description than apps that do not?

To identify apps that explain the permission-group purposes in the description, we leverage

the WHYPER tool and the keyword matching technique [30]. WHYPER is a state-of-the-art

tool for identifying permission-explaining sentences. We apply WHYPER on the CONTACTS

and the MICROPHONE permission groups. Because WHYPER [103] does not provide the

entire pipeline solution for other frequent permission groups, we use the keyword matching

technique to match sentences for another permission group LOCATION. Prior work [74] also

leverages keyword matching for efficient processing. We show the results in Table 3.6.

Result Analysis. From Table 3.6, we can observe two findings. (1) In two out of the three
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#apps #apps #apps
Pearson

descript rationales both

LOCATION 5,747 7,088 2,028 (0.15, 1.86e-168)
CONTACTS 1,542 2,607 394 (0.12, 1.5e-78)
MICROPH 957 2,152 245 (0.02, 0.12)

Table 3.6: The number of apps that explain a permission group’s purposes in the app
description (the #apps descript column), in the rationales (the #apps rationales column), in
both (the #apps both column), and the Pearson correlation coefficients between whether
an app explains a permission group’s purpose in the description vs. rationales (the Pearson
column).

cases, the correlations are significantly positive. Therefore, an app that provides runtime

rationales is also more likely to explain the purpose in the description. (2) There exist more

apps using runtime rationales to explain the permission-group purposes than apps that use

the descriptions.

Finding Summary for RQ 3.5. The explanation behaviors in the description and in

the runtime rationales are often positively correlated. Moreover, more apps use runtime

rationales to explain the purposes than using the descriptions. This result implies that

apps’ behaviors of explaining permission-group purposes are generally consistent across the

descriptions and the rationales.

3.9 THREATS TO VALIDITY

The threats to external validity primarily include the degree to which the studied Android

apps or their runtime rationales are representative of true practice. We collect Android

apps from two major sources, one of which is the Google Play store, the most popular

Android app store. Such threats could be reduced by more studies on more Android app

stores in future work. The threats to internal validity are instrumentation effects that can

bias our results. Faults in the used third-party tools or libraries might cause such effects.

To reduce these threats, we manually double-check the results on dozens of Android apps

under analysis. Human errors during the inspection of data annotations might also cause

such effects. To reduce these threats, two co-authors independently conduct the inspection,

and then compare the inspection results and discuss to reach a consensus if there is any

discrepancy in the results.
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3.10 IMPLICATIONS

In this chapter, we attain multiple findings for Android runtime rationales. These findings

imply that developers may be less familiar with the purposes of the PHONE and CONTACTS per-

mission groups and some rationales in these groups may be misleading (RQ 3.1 and RQ 3.3);

the majority of apps have not followed the suggestion for explaining non-straightforward

purposes [77] (RQ 3.2); a large proportion of rationales may either be unnecessary or need

further details (RQ 3.4), and apps’ explanation behaviors are generally consistent across

the descriptions and the rationales (RQ 3.5). Such findings suggest that the rationales in

existing apps may not be optimized for the goal of improving the users’ understanding of

permission-group purposes. Based on these implications, we propose two suggestions on the

system design of the Android platform.

Providing Official Guidelines or Recommender Systems. It is desirable to offer

an official guideline or a recommender system for suggesting which permission-group to

explain the purpose [74], e.g., on the Android developer guides [77] or embedded in the

IDE. For example, such a recommender system can provide a list of functionalities, so that

the developer can select which functionalities are used by the app. Based on the developer’s

selections, the system scans the permission-group requests by the app, and lets the developer

know which permission group(s)’s purposes may look non-straightforward to the users. In

addition, the system can suggest rationales for the developers to adapt or to adopt [74].

Controls over Permissions for the Users. When a permission group contains multiple

permissions, such design increases the challenges and errors in explaining the purposes. It is

interesting to study whether a user actually knows which permission she has granted, e.g.,

does a weather app use her precise location or not? One potential approach to improve

the users’ understanding is to further scale down the permission-control granularity from

the user’s end. For example, the “permission setting” in the Android system can display

a list showing whether each of the user’s permissions (instead of permission groups) has

been granted; and doing so also gives the user the right to revoke each low-level permission

individually.

3.11 CONCLUSION

In this chapter, we conduct the first large-scale measurement study on how effective exist-

ing Android permission rationales are in assisting mobile users with security decision making.

We have leveraged statistical analysis for producing five new findings. (1) Less than one-

fourth of the apps provide rationales; the purposes of using PHONE and CONTACTS are the
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least explained. (2) In most cases, apps explain straightforward purposes more than non-

straightforward ones. (3) Two permission groups PHONE and CONTACTS contain significant

proportions of incorrect rationales. (4) A large proportion of the rationales do not provide

more information than the permission-requesting messages. (5) Apps’ explanation behaviors

in the rationales and in the descriptions are positively correlated. Our findings indicate that

developers may need further guidance on which permission groups to explain the purposes

and how to explain the purposes. It may also be helpful to grant the users controls over

each permission.
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CHAPTER 4: RECOMMENDING EXPLANATIONS TO ASSIST
SECURITY DECISION MAKING

4.1 OVERVIEW

Upon identifying the deficiencies in existing permission explanations, we propose to study

how to assist app developers to create new explanations or revising their current explanations

through the usage of a recommender system. In Figure 4.1, we illustrate how our recom-

mender system works. First, by observing sentence 2 (“driving direction to stores near you”)

and sentence 4 (“map the isle location for any in-store item with the product location”), the

developer realizes that the current explanation “store locator” has not specified whether it is

an indoor locator or an outdoor locator, thus she adds the words “indoor” for clarification;

second, by observing the keyword “map” in sentence 3, the developer is reminded of the map

feature in her own apps, thus adding it to the explanation; finally, by observing sentence 4,

the developer discovers a new feature, i.e., indoor locator, to be added to the next release of

the app.

How to build the recommender system in Figure 4.1? Upon observing the deficiencies

of rationales in Chapter 3, we have learned that the quality of a rationale can be captured

by the following characteristics: (1) relevance. An explanation must correctly address the

permission purpose; (2) conciseness. For the sake of interpretability, an explanation sentence

cannot be too long; (3) detailed purpose. An explanation sentence should specify the fine-

grained purpose, e.g., instead of saying only “the app must use your phone call permission

in order to proceed”, the explanation may specify that the detailed purpose is to pause the

music when receiving incoming calls; (4) diverse wording choices. To help developers explore

different ways to improve the explanation, the too-k recommended sentences should provide

a diverse suite of wording choices instead of repeating each other.

With the above characteristics, we propose a recommender system that retrieves explana-

tion sentences from similar apps’ descriptions. We name it CLAP, which is the abbreviation

for CoLlaborative App Permission recommendation. CLAP uses the following four-step

process to recommend a list of candidate sentences. First, based on the information from

the current app (including the current app’s title, description, permissions, and its cate-

gorical information), CLAP leverages a text retrieval framework to rank every app from

the dataset (Section 4.2). Second, for every top-ranked app, CLAP scans every sentence in

its description text and assesses whether the sentence explains the target permission (Sec-

tion 4.3.2). CLAP further splits the matched sentences into smaller units, to reduce the

cases where one sentence contains multiple permissions (Section 4.3.1). Third, CLAP re-
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…getProviders()

Description: Home 
improvement made 

easy, shop….

API:

2. driving direction 
to stores near you

Developer: 
LOCATION is for store 

locator, how to 
explain it to user?

1. locate stores near 
you 

Name: menards

Requirement: explain why using LOCATION?

3. use the map 
view to locate a 
store near you

4. map the aisle 
location for any in-
store item with the 
product location

Figure 4.1: An example showing how CLAP assists developers with permission explanations,
with the dashed rectangle showing sentences recommended by CLAP.

ranks the top-K sentences based on how likely each sentence states the true purpose; Finally,

CLAP post-processes the re-ranked sentences to remove duplications and to improve their

interpretability (Section 4.5).

We evaluate CLAP’s performance (Section 4.6) on a large dataset consisting of 1.4 mil-

lion Android apps. First, we examine the relevance of the recommended sentences. We

extract the ground truth purposes from 916 apps as the gold standard sentences, and com-

pare the CLAP-recommended sentences with the ground-truth sentences. The evaluation

results show that CLAP has a high relevance score compared with existing state-of-the-art

approaches [30]. Second, we conduct a qualitative study on the interpretability of CLAP-

recommended sentences. Our case study results show that these sentences demonstrate good

interpretability: the sentences are concise, they convey specific purposes, and they support a

diverse suite of wording options. Overall, CLAP has demonstrated good promise in helping

developers improve their permission explanations.

This chapter makes the following contributions:

• We make the first attempt to study the problem of recommending permission expla-

nations;

• We propose a novel recommender system CLAP by leveraging similar apps’ permission-

explaining sentences;

• We evaluate CLAP on a large-scale dataset and show that CLAP effectively provides

highly relevant explaining sentences, showing great promise of CLAP as an assistant

for creating or improving app-permission explanations;

The rest of this chapter is organized as follows. Sections 4.3 - 4.5 introduce the four-

step process of the CLAP framework: identifying explaining sentences (Section 4.3), finding

similar apps (Section 4.2), voting explaining sentences (Section 4.4), and post-processing
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sentences (Section 4.5). Section 4.6 presents the evaluation results on three security-sensitive

permissions, Section 4.7 discusses related work, and finally, Section 4.8 discusses future work,

limitations of CLAP, and concludes the chapter.

4.2 RETRIEVING SIMILAR APPS

To explain the purpose for an app Q to request permission P , CLAP first retrieves a list

of similar apps fro the Google Playstore, which are apps that also request P and are similar

to Q in terms of their titles, descriptions, requested permissions and their Google Playstore

categories:

sim(Q,D, P ) = (λ1simdesc(Q,D) + λ2simtitle(Q,D)

+λ3simperm(Q,D) + λ4simcate(Q,D)) (4.1)

Where the coefficients λi’s control the importance of each component. In our experiments

(Section 4.6) we set λ1 = λ2 = 0.4 and λ3 = λ4 = 0.1. Next, we describe the definitions of

each similarity component.

4.2.1 Description Similarity

Existing work often use the topic model to measure the similarities between app descrip-

tions [80]. Different from existing work, the simdesc(Q,D) in Equation 4.1 is defined as the

Okapi BM25 model [104]. The reason why we prefer the retrieval model over the topic model

is that topic models are generative models, thus they are not sharp enough to model the

similarity between long texts such as app descriptions (on average an app description con-

tains 135 words). Because long texts contain rich contextual information, their similarities

can already be effectively captured using token-level similarity measurement such as BM25.

A topic model will often obfuscate this similarity by bringing words together even they are

only remotely related. For example, email apps and SMS apps are “similar” under the topic

model, however, they clearly represent different functionalities under the mobile context.

To further model the fine-grained textual similarities, we leverage the following procedures

in the BM25 model: first, we stem the tokens; second, we leverage both the unigram and

bigram tokens; third, we carry out the following standard pre-processing steps for text

retrieval:
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Stop-Word Removal. We remove regular English stop words from Python’s nltk stop

words list [105], e.g. “the” and “a.” In the mobile context, words such as “Android,”

“application,” and “version” should also be treated as stop words, because they can appear

in any app. We identify a complete list of 294 words. We create the list by empirically

scanning through the top frequent words, and then manually annotating whether each word

can appear in any app, regardless of the context. The list can be found on our project

website [106].

Background-Sentence Removal. A mobile-app description usually contains some

“stop sentences” that are unrelated to its functionalities, e.g., “fixed bug in version 1.7.”

We implement a remover of common background sentences for mobile apps using 53 reg-

ular expressions. Same as the creation of stop words, the creation of regular expressions

is based on the empirical judgment on whether a sentence can appear in any app, e.g.,

.*version\s+\d.* detects whether a sentence describes a version number. The list of

regular expressions can be found on our project website [106].

After the preceding pre-processing steps, we obtain the BM25 scores between the current

app Q and every candidate app D in the dataset. To make the description similarity com-

parable to other similarity components, we normalize the BM25 scores with the maximum

BM25 score over all the candidates before plugging the normalized score into Equation 4.1.

4.2.2 Title Similarity

An app’s description usually offers the most important information to capture its similari-

ties [80], but if CLAP uses only the descriptions, sometimes it is difficult to retrieve accurate

results, due to the noise in descriptions that cannot be fully cleaned in pre-processings. For

example, many app descriptions contain SEO words, which may not be strictly relevant to

the functionalities of the apps. On the other hand, the app titles captures the most im-

portant functionality of the app, thus they can serve as a complement for modeling app

similarities.

One challenge in modeling the title similarity is the vocabulary gap between similar words,

e.g., “alarm” and “wake up clock,” mainly because titles are short texts (on average a title

contains 2.8 words). To bridge this gap, we need to use a method that explicitly models

the semantic relatedness between two words. To this end, we leverage the word2vec [107]

(GoogleNews-neg300 [108]) for bridging the vocabulary gap. For each pair of apps Q and

D, we define their title similarity as the average cosine similarity between each word w1 ∈ Q
and each word w2 ∈ D. To avoid over-matching unrelated word pairs, we set 0.4 as the

threshold for using the similarity.
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4.2.3 Permission Similarity

Because app permissions are categorical data, we model the permission similarity as

the Jaccard distance between the two permission lists. The reason why we incorporate

the permission similarity is the observation that an app’s permissions can represent its

functionality. For example, an emergency contact app usually uses READ CONTACTS and

ACCESS FINE LOCATION at the same time, and the usage of location permission distinguishes

these apps from other contact apps.

Previous work [80] leverages security-sensitive APIs to model the similarity between apps.

Security-sensitive APIs specify the fine-grained purposes for requesting the Android per-

missions. Although APIs carry more information than the permissions, it is also more

challenging to model the similarity between APIs. The challenge comes from the fact that

developers often use different APIs to achieve the same functionality (e.g., a Stack Overflow

post [109] shows several different techniques to obtain user location), and use the same API

to achieve different functionalities. As a result, we model only the permission-level similarity

and leave the exploration of API similarity for future work.

4.2.4 Category Similarity

Finally, we capture the category similarity between the two apps. The categorical infor-

mation is helpful to further capture an apps’ main functionality and reduce the noise in

the app description. For example, the category of an app for selling girl scout cookies is

“business”, which separates the app from “cooking” apps on cookie recipes.

We represent each category as a TF-IDF vector, which is the dense vector of all words

from an app in that category. The similarity between Q and D is defined as the cosine

similarity between the two vectors.

4.3 IDENTIFYING PERMISSION-EXPLAINING SENTENCES

After retrieving similar apps, the next step of CLAP is to identify which sentence in these

descriptions explain the permission P .

Previous work such as WHYPER [30] addresses this problem (of identifying permission-

explaining sentences) by matching sentences against P ’s textual representation, which is

extracted from the documentations of the APIs that request P 1.

1Each permission P contains a list of security-sensitive APIs, such that if an app calls these APIs they
must request P [78].
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We leverage WHYPER to extract the permission-explaining sentences. However, we can-

not use WHYPER out of the box because our problem is slightly different than WHYPER’s

problem. While WHYPER uses an app’s description to explain its own permissions, we

leverage the similar apps’ descriptions to explain the current app’s permissions. A similar

app can use the same permission for a different purpose, it may also use the same permission

for multiple purposes and explain the multiple purposes in the same sentence. For example,

the sentence “save the recording as a ringtone and share it with your friends” describes

the usages of two permissions: RECORD AUDIO and READ CONTACTS. If the current app uses

only the first permission, and we use the entire sentence to explain the current app, the

second part of the explanation would be irrelevant On the other hand, if we split the original

sentence into shorter units, the first part will contain only the relevant information.

4.3.1 Splitting Sentences into Individual Purposes

The algorithm for splitting each sentence is listed in Algorithm 4.1. In this step, we use a

sentence set S to store all the candidate sentences, later we will re-rank candidates in S to

get the most relevant sentences.

We split a sentence based on its parsing result of a constituent tree [110]. At each conjunc-

tion node in the tree (e.g., “save the recording as a ringtone and share it with your friends”),

we include both children of the node in S. Furthermore, we include all the verb phrases in

the parsing tree, because a permission purpose can usually be summarized to as short as a

verb phrase [30, 89], e.g., “create QR code from contact,” “assign contact ringtone.”

In this step, we include as many candidate sentences as possible to bootstrap the quality

of the output sentences. If one verb phrase is embedded in another, we include both of them

in the candidate set.

4.3.2 Extracting Permission-Explaining Sentences

In this step, we extract permission-explaining sentences from the candidate sentence set

S. The most straightforward approach is WHYPER [30]. WHYPER identifies whether a

sentence explains a permission by comparing the sentence against the permission’s textual

representation. Although WHYPER shows good accuracies, it does not scale well. As

a result, we propose to use the following approach (instead of WHYPER) for identifying

permission-explaining sentences:

Keyword Matching. We propose to leverage a rule-based approach by examining the

sentence against a pre-defined set of keywords (e.g., “scan, barcode” specifies the purpose of
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Algorithm 4.1: Constructing The Candidate Set

Input : Sentence s and its tree structure T obtained from constituent parsing [110];
Output: Candidate sentences S from s;

1 S ← ∅;
2 S ← S ∪ {s}; // add the original sentence

3 for node n in T do
4 if n = V P then
5 S ← S ∪ {s(n)}; // add the verb phrase s(n)
6 end
7 if n = CC then
8 for node n0 in n.parent.children and n0! = CC do
9 S ← S ∪ {s(n0)}; // split on conjuncts

10 end

11 end

12 end

using the CAMERA permission) as well as checking its POS tags. The POS tags can be used to

differentiate between permissions. For example, when the word “contact” is used as a noun,

it usually refers to phone contacts, so it explains READ CONTACTS, whereas if it is used as a

verb, e.g., “contact us through email,” it does not explain READ CONTACTS. The complete list

of pre-defined keywords and POS tags set can be found on our project website [106].

After this steps, we discard apps where CLAP has not identified any permission-explaining

sentences.

4.4 RE-RANKING CANDIDATE SENTENCES

After the preceding steps, CLAP obtains a set of permission-explaining sentences from

similar apps. Next, we re-rank the these sentences to improve the relevance of sentences in

the top results.

Discussion on Why Re-Ranking Is Necessary. Before introducing the techniques

for re-ranking, one question is do we need re-ranking at all? Can we simply use, say, the first

5 sentences to explain the permission? If we greedily pick the first few sentences from the

most similar app, such sentences may be non-relevant for the following reasons. First, there

may exists mismatches in the app retrieval results2, if an app is non-relevant to the current

2After exploring three retrieval techniques: BM25 [104], language model [111], and vector space
model [112], we find that all the techniques generate false positive results. Such results are due to noisy
components in the app descriptions, e.g., SEO words that are sometimes irrelevant to the primary app
functionality.
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app, its permission purpose is also non-relevant. Second, even if an app is relevant, it may

use the permission for a different purpose. Third, one app may use the same permission for

multiple purposes. For example, an alarm app may use ACCESS FINE LOCATION for weather

report and advertisement at the same time.

Re-ranking Candidate Sentences with Truth-Finding. Because the greedy ap-

proach results in false positive sentences, CLAP re-ranks the sentences so that top-ranked

ones are more relevant to the true permission purposes. How to re-rank the sentences with-

out knowing the true purposes? To discover the unspecified true purpose, we can leverage

the truth-finding technique in crowd-sourcing [113]. Basically, each application “votes” for

a purpose, the more votes a purpose receives, the more likely it is the true purpose.

Measuring Sentence Semantic Frequencies. We thus need to find out how many

votes each sentence receives. The votes should not be based on the exact matching because

different sentences can share the same meaning. Instead we should use the semantic frequency

to define the votes. The semantic frequency of a sentence can be estimated as the average

semantic frequency of its words:

votes(s) =
1

|s|
∑
w∈s

votes(w) (4.2)

Measuring Word Semantic Frequencies through Summarization. To compute

the semantic frequency of a word, we leverage the text summarization technique, i.e., Tex-

tRank [114]. For the k-th app Dk, TextRank turns its description into a (word, weight)

vector, where the weight of each word w measures how important w is to this app. As a

result, we can see this weight as the “votes” that word w receives from the k-th app. After

obtaining the TextRank scores, we further normalize the weights so that the weights from

different apps are comparable to each other.

Penalizing Too General Words. By averaging over the top-K apps’ votes, we can

obtain the semantic frequency of a word. However, one issue with this definition is that

the words on top are all too general words. For example, the top-3 most frequent words

for READ CONTACTS are “contact,” “contacts,” and “read.” Consequently, the top-ranked sen-

tences are such as “to read contacts”, which have not specified any fine-grained purposes. As

discussed in Chapter 3, to improve the interpretability of an explanation, we need to specify

its fine-grained purpose instead of simply repeating the fact of requesting the permission.

As a result, we have to penalize the semantic frequencies of those too general words. To this

end, we apply the inverse document frequency (IDF [115]) of each word w.
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In summary, the votes that each word w receives is defined as:

votes(w) = IDF (w)× 1

K

K∑
k=1

TextRank(w,Dk)

max
w′∈V

TextRank(w′, Dk)
(4.3)

Here V is the vocabulary set and Dk represents the k-th similar app retrieved by our app

ranker (Section 4.2). Some examples of the top-ranked words are shown in Table 4.4-4.6. We

can see that the most voted words are often strongly related to the true permission purpose.

4.5 POST-PROCESSING PERMISSION-EXPLAINING SENTENCES

Finally, CLAP post-processes the most voted sentences from the preceding steps. The

post-processing includes the following two steps.

Removing Duplicated Sentences. After the sentences are ranked by their votes, some

sentences may be duplicated. To ensure the diversity of the output sentences, we select the

first 5 unique sentences and recommend them to the developer.

Adding Direct Mentions of Permissions. Note that one sentence can most clearly

explain the permission purpose when it explicitly mentions the permission’s name. In our

dataset, some sentences contain only implicit mentions of the permission usage. For example,

the sentence “send text messages to your contacts” explicitly mentions the target permission

READ CONTACTS while another sentence “send text messages” only implicitly mentions the

permission. To improve the interpretability of the output sentences, CLAP rewrites an

implicit sentence into an explicit permission-mentioning sentence. For example, “send text

messages” is rewritten as “send text message (from/to contact).” Our evaluations do not

rely on the post-processing. However, the post-processing steps help the understanding of

the output sentences. The pre-defined rules used for post-processing can be found on our

project website [106].

4.6 EVALUATION

In this section, we design experiments to answer the following research question: to what

extent can CLAP help developers with improving the quality of explanation sentences?

Following the findings from Chapter 3, we identify four characteristics of a good explana-

tion sentence: (1) relevance. The explanation must correctly address the permission purpose;

(2) conciseness. The explanation cannot be too long; (3) detailed purpose. The explana-

tion sentence should specify the fine-grained purpose; (4) diverse wording choices. The top
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app-set Qauthr Qdev

CONTACT 62,147 48 160
RECORD 75,034 48 103
LOCATION 76,528 N/A 564

Table 4.1: Sizes of our three app-sets and five test collections: Qauthr’s, author-annotated
explanations; Qdev’s, developer-annotated explanations.

explanation sentences should support diverse wording choices.

In this section, we conduct a series of quantitative experiments to evaluate the relevance

of CLAP, while (2)-(4) are evaluated through a qualitative experiment in Section 4.6.7.

4.6.1 Dataset

We use the PlayDrone dataset [116], which is a snapshot of the Google Play store in

November 2014. Our dataset consists of 1.4 million apps in total. In order to fairly com-

pare with the state-of-the-art technique for permission explanation, i.e., WHYPER [30], we

study three permissions [8]: READ CONTACTS, RECORD AUDIO, and ACCESS FINE LOCATION3.

We denote the set of apps containing each of the three permissions in the sans-serif font:

CONTACT, RECORD, and LOCATION. We keep only those apps whose descriptions are in

English. We show the sizes of the three app-sets in Table 4.1. Because the original LOCA-

TION app-set is too large (more than 360,000 apps), we sample 21% apps from the original

set for efficiency. The column #Apps of Table 4.1 shows the sizes of the three app-sets.

4.6.2 Extracting Ground-Truth Sentences

The ground-truth sentence is the sentence that specifies the true permission purpose of

an app. It is difficult to obtain a large-scale ground-truth test collection without soliciting

annotations from the developers themselves. On the other hand, we are able to obtain a

reasonable amount of ground-truth through: (1) extracting permission annotations in app

descriptions, and (2) manually annotating permission explanations from app descriptions.

We describe the two datasets as below4.

Developer-Annotated Explanations. In the PlayDrone dataset, a small number of

3The reason for us to choose the three permissions is that the WHYPER tool [30] provides full pipelines
for only three permissions. For other permissions, although it is possible to complete the full pipeline with
our efforts, the comparison against baselines may not be fair. We plan to include more permissions in future
work.

4All test collections in this chapter can be found on our project website [106].
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apps (2‰) have included permission annotations in their app descriptions. For example, a

permission annotation in the app AlarmMon [117] looks like:

AlarmMon requests access for reasons below...:

ACCESS FINE LOCATION: AlarmMon requests access in order to provide the current weather

for your location after alarms

GET ACCOUNTS: You can sign up for AlarmMon with your Google+ account saved on your

contact list

After observing a significant number of ground-truth sentences annotated by developers,

we find that these sentences often follow the following pattern: they start with a permission

name and a punctuation (e.g., semi-colon, period or hyphen), e.g., ACCESS FINE LOCATION ,

the next sentence would be the ground truth purpose. We leverage this pattern to automati-

cally extract ground-truth sentences from app description texts (the regular expressions can

be found on our project website [106]). We manually inspect a small sample of extracted

sentences to double check whether the regular expressions work as expected, and the results

of our manual inspection have an average precision of 97%. We use this technique to obtain

three test collections for our three permissions, denoted as as Qdev’s. We show the number

of 〈app, ground-truth sentence〉 pairs in each Qdev in Table 4.1.

Author-Annotated Explanations. Although Qdev’s can reflect permission explana-

tions, there exist length biases in Qdev’s. The average length of app descriptions from Qdev’s

(330 words) is 2.4 times that of all app descriptions (135 words). The reason for such dif-

ference is that apps that include permission explanations tend to have long descriptions. As

a result, the performance on Qdev can only tell how CLAP performs on long descriptions.

In order to observe CLAP’s performance on shorter descriptions, we follow the evaluation

methodology from previous work [30] to manually annotate ground-truth sentences from

randomly sampled apps. Two authors independently annotate the sentences and discuss to

resolve conflicts. In total, the manual efforts involve annotating ∼2,000 sentences for each

test collection. We denote the author-annotated collections as Qauthr’s, and show their sizes

in Table 4.15.

Discussion on the Sizes of Test Collections. The sizes of our test collections range

from 48 to 564, which is relatively small. However, it is also almost intractable to obtain

larger collections. First, manual annotations on permission explanations require a reasonable

amount of domain knowledge in mobile apps and technologies. As a result, these efforts

5Due to significant manual efforts needed in the annotations, we construct only CONTACTauthr and
RECORDauthr without constructing LOCATIONauthr for the work in this chapter.
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cannot be trivially replaced by crowd-workers’ annotations. Second, we also cannot rely on

existing tools for automatic annotations. We test state-of-the-art sentence annotation tools

in previous work [30, 89]. Unfortunately, these tools have large false positive rates6, and

therefore the annotated sentences are not clean enough to serve as the ground-truth. In

total, our five test collections consist of 916 〈app, ground-truth sentence〉 pairs.

4.6.3 Evaluation Metrics

To evaluate the relevance of CLAP-recommended sentences, we define the following met-

rics.

SAC: The sentence accuracy based on manual judgment. After obtaining sentences rec-

ommended by CLAP (and sentences recommended by all baselines), we manually judge the

accuracy of the results. For each pair of ground-truth sentence × CLAP-recommended sen-

tence, two authors independently judge whether the sentences in the pair are semantically

identical, and discuss to resolve the conflicts7. This step gives rise to 2× 48× 4× 5 = 1, 920

sentence-pair labels.

AAC: The app accuracy based on manual judgment. In addition to the sentence accuracy,

we also evaluate the accuracy of the app where the recommended sentence comes from. The

reason to evaluate the app accuracy is that the developer may want to further make sure

that the retrieved apps share the same functionality with the current app. For each pair of

〈retrieved app, the current app〉, two authors independently judge whether the apps in the

pair share the same functionality, and discuss to resolve conflicts. This step gives rise to

2× 48× 4× 5 = 1, 920 app-pair labels8.

JI: The average Jaccard index [119]. We propose to use an automatic evaluation metric.

The average Jaccard index measures the average word-token overlap between a recommended

sentence and the ground-truth sentence. We remove stop words in both sentences to reduce

the matching of non-informative words.

WES: The average word-embedding similarity. The average Jaccard index measures only

the word-token overlaps. To better capture the semantic similarity, we propose to use another

automatic metric, i.e., the average cosine distance between word embedding representations

6We evaluate false positive (FP) rates of WHYPER [118] and AutoCog [89] on the WHYPER benchmark.
WHYPER has a 20% FP rate on the READ CONTACTS app-set and 21% FP rate on the RECORD AUDIO app-set.
AutoCog has a 33% FP rate on the READ CONTACTS app-set.

7For example, if ground-truth sentence s1 = “this app uses your contacts permission for contact sugges-
tion,” recommended sentence s2 = “to automatically suggest contact,” and s3 = “to read contacts,” we judge
s2 as relevant and s3 as non-relevant.

8For example, for app a1 = “group sms,” a2 = “group message,” and a3 = “sms template,” we judge the
app a2 as relevant and a3 as non-relevant.
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of the two sentences [108], or WES in short. WES is defined as below (same as the title-

similarity function in Section 4.2.2):

WES(sr, sg) =
1

|sr|
1

|sg|
∑

w1∈sr,w2∈sg

sparse cos(w1, w2) (4.4)

where sr and sg are the recommended sentence and the ground-truth sentence, respectively.

if the word2vec similarity is smaller than 0.4, sparse cos is set to 0.

For each metric, we report the overall average scores over the top-1, top-3, and top-5

recommended sentences.

4.6.4 Baselines

Because no previous work has focused on the same setting as our problem, we cannot

compare CLAP’s performance with any existing work out-of-the-box; however, we can build

baseline approaches by assembling existing work as below.

Top Similar apps + Permission Keywords (T+K). In the first baseline approach,

we go through the same process for re-ranking apps (Section 4.2) and matching permission-

explaining sentences (Section 4.3.2). However, instead of splitting and re-ranking sentences,

this baseline uses the first 5 sentences as the results (Section 4.3.2).

Top Similar Apps + WHYPER (T+W). This approach follows the same pipeline as

T + K, except that the sentence matching is through WHYPER [30] instead of our keyword

matcher (Section 4.3.2).

Random Similar Apps + Keywords (R+K). This approach follows the same pipeline

as T + K, except that it randomly selects 5 sentences instead of using the first 5.

4.6.5 Evaluating Relevance: JI and WES

First, we examine the JI and WES on our five test collections (including 916 ground-truth

sentences). In Table 4.2, we report the average JI and WES over the top-1, top-3, and

top-5 sentences recommended by CLAP and the three baselines. To configure the parameter

settings for the study, we empirically set the K in Section 4.4 to 500 (i.e., using the top-500

apps for truth finding); we empirically set λ1 = λ2 = 0.4 and λ3 = λ4 = 0.1 in the similar-app

ranker (Equation 4.1), where the λi’s are shared by all the four approaches. The reason for

us to set larger weights on the titles and descriptions than on the permissions and categories

is that the titles and descriptions are more informative than the permissions and categories.
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(a)

CONTACTdev RECORDdev LOCATIONdev

top1 top3 top5 top1 top3 top5 top1 top3 top5

JI

T+K 0.015 0.015 0.014 0.054 0.052 0.054 0.019† 0.019† 0.019†

T+W 0.023† 0.026† 0.026† 0.092 0.087† 0.086† \ \ \
R+K 0.013 0.008 0.008 0.042 0.044 0.043 0.014 0.012 0.012
CLAP 0.032 0.036 0.037 0.091† 0.105 0.103 0.027 0.025 0.023

p 0.18 0.07 0.03 \ 0.16 0.15 0.04 0.03 0.03

WES

T+K 0.012 0.013 0.012 0.041 0.040 0.040 0.014† 0.014† 0.014†

T+W 0.016† 0.018† 0.019† 0.061† 0.060† 0.060† \ \ \
R+K 0.012 0.010 0.010 0.039 0.035 0.038 0.010 0.010 0.010
CLAP 0.031 0.033 0.033 0.079 0.084 0.081 0.025 0.023 0.021

p 3e-4 2e-4 5e-4 0.11 9e-3 9e-3 6e-5 3e-6 5e-7

(b)

CONTACTauthr RECORDauthr

top1 top3 top5 top1 top3 top5

JI

T+K 0.065† 0.061† 0.061† 0.064 0.069 0.069
T+W 0.058 0.059 0.055 0.118† 0.107† 0.108†

R+K 0.042 0.037 0.043 0.090 0.082 0.084
CLAP 0.186 0.170 0.152 0.133 0.147 0.129

p 6e-4 7e-5 1e-4 0.065 0.06 0.27

WES

T+K 0.040† 0.040† 0.039† 0.033 0.040 0.040
T+W 0.038 0.039 0.036 0.056† 0.051† 0.050†

R+K 0.025 0.027 0.031 0.045 0.041 0.043
CLAP 0.114 0.107 0.097 0.070 0.076 0.068

p 1e-5 5e-7 2e-6 0.28 4e-3 0.02

Table 4.2: The quantitative evaluation results of text-similarity scores: JI (average Jaccard
index) and WES (average word-embedding similarity). The highest score among the four
approaches is displayed in bold, and the second highest score is displayed with a †. We also
show the p-values of T-tests between the highest score and second highest score, and the
p-value is shown in bold if it is significant (less than 0.05). The parameter settings here are
λ1 = λ2 = 0.4, λ3 = λ4 = 0.1, top-K=500.

Result Analysis. To observe CLAP’s performance, for each setting in Table 4.2: 〈test

collection, top-K, metric〉, we highlight the approach with the highest score (marked in

bold) and second highest score (marked with †). We conduct statistical significance tests,

i.e., T-tests [65], between the two scores. We display the p-values of the T-tests. A p-value

is highlighted in bold if it shows statistical significance (i.e., p-value less than 0.05). We

can observe that CLAP has the highest score over all the settings except for 〈RECORDdev,

JI〉. We can also observe that the majority of T-test results are significant. The three least
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-desc -title all
CONTACTdev 0.026 0.037 0.033
RECORDdev 0.035 0.077 0.081
LOCATIONdev 0.015 0.024 0.023

Table 4.3: CLAP’s WES results of excluding app descriptions (denoted by “-desc”), exclud-
ing titles (denoted by “-title”), and including all four components (denoted by “all”)

significant settings are JI in CONTACTSdev, RECORDauthr, and RECORDauthr. In general,

CLAP performs better in WES than JI. Because WES captures external knowledge with

word embedding vectors while JI captures only the word-token overlaps, WES models the

semantic relevance better than JI.

On the other hand, when comparing the scores across different top-K values, we can

observe that the p-values of the average over the top-5 scores are slightly more robust than

those of the top-1 scores

Among the three baselines, T + W performs better than T + K, indicating that WHYPER

performs better than our keyword matching technique (Section 4.3.2). T + K performs better

than R + K, indicating that sentences from the top similar apps are more relevant than those

from random similar apps.

Effects of CLAP’s Parameters. To study the effects that CLAP’s parameters have on

its performance, we conduct two experiments where we vary the parameters (λi and top-K)

and examine how the results change with these parameters.

λis: λi’s determine the importance of each component in the similar-app ranker. We study

two variants of λis (while fixing the top-K): (1) excluding app descriptions; (2) excluding

titles. In Table 4.3, we show CLAP’s performance in these two settings. We can see that

excluding the descriptions always hurts the performance, while excluding the titles can im-

prove the performance. This result indicates that app descriptions are more important than

app titles for re-ranking similar apps.

Top-K: the top-K determines how many similar apps to use for the majority voting. We

study the effects of varying the top-K value while keeping the λis fixed. We plot CLAP’s

performance in Figure 4.2. We can see that the overall WES scores are relatively stable; for

location data, the scores slightly increase as the top-K increases.

Summary. The main difference between CLAP and the baseline approaches is that

CLAP (1) splits the sentences into shorter ones; (2) ranks the sentences through majority

voting. This result indicates that the two heuristic strategies are effective in improving the

relevance of the output sentences.
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Figure 4.2: CLAP’s WES results across different K values
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Figure 4.3: The quantitative evaluation results of manually-judged accuracy: bar plots show
the average accuracy of top-5 results in each of the four approaches. The upper plot shows
results on CONTACTauthr; the lower plot shows results on RECORDauthr; T-test between the
highest and second highest scores in each group are 9e-7, 0.03, 9e-6 (upper) and 4e-6, 0.04,
1e-4 (lower). Parameter settings are λ1 = λ2 = 0.4, λ3 = λ4 = 0.1, top-K=20.

4.6.6 Evaluating Relevance: Manually-Judged Accuracies

For the second step of the quantitative study, we conduct a manual evaluation on the sen-

tence accuracy (SAC) and app accuracy (AAC). This step is for obtaining more interpretable

metrics (accuracy) than JI and WES. The SAC/AAC scores reflect how high percent of the

top sentences/apps are relevant. Because SAC/AAC scores come from human judgment,

they also more precisely capture the semantic relevance than JI and WES. In Figure 4.3, we

plot the SAC and AAC of the four approaches over the top-5 recommended results. We also

plot the average SAC×AAC, which reflects how high percent of 〈app, sentence〉 pairs (among

top-5 results) contain both a relevant sentence and a relevant app. Here the parameters are

fixed to λ1 = λ2 = 0.4, λ3 = λ4 = 0.1 and top-K = 20.

Results Analysis. Figure 4.3 shows that CLAP has a significantly better performance

in all the three metrics. Notice that while T+K and T+W recommends the most similar

apps, they have a lower AAC than CLAP. Such result might indicate that CLAP has the

potential to discover more relevant apps through truth finding.
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4.6.7 Qualitative Evaluation

We next present our qualitative evaluation on the interpretability of recommended sen-

tences. Our study looks into three aspects of the interpretability of a sentence: (1) diversity,

(2) specificity and (3) conciseness.

Because it is difficult to answer these questions quantitatively, we inspect a few examples

of the recommended sentences and manually examine their interpretability.

Column 3 of Table 4.4-4.6 shows the sentences that CLAP recommends for three example

apps. The three apps come from CONTACTSdev, RECORDdev, and LOCATIONdev, respec-

tively. For each app, Column 2 shows its title, description, and the ground-truth explaining

sentence. Column 4 shows the top-voted words (based on Equation 4.4, Section 4.4). We

show a word in bold if it overlaps with words in the recommended sentences or with the

current app’s description.

From Table 4.4-4.6, we observe the following three characteristics of the recommended

sentences.

Diverse Choices of Re-Phrasing. We observe that the recommended sentences provide

various ways of rephrasing the explanation, e.g., “to send a scheduled sms” vs. “set the time

to send message”, allowing the developer to choose from a diverse suite of vocabularies to

improve the explanation. The reason why CLAP can support diverse wording choices is that

it removes duplicated sentences in the post-processing step (Section 4.5).

Detailed Purposes. We observe that the sentences recommended by CLAP usually

state concrete and detailed permission purposes. In contrast, the sentences recommended

by the baselines often contain examples such as “to read contacts,” which does not mention

any specific purpose. The reason why CLAP can recommend more detailed purposes is

that it leverages the inverse document frequency (IDF) for word voting (Section 4.4). The

IDF helps select the most meaningful words by penalizing common and non-discriminative

words [115]. Indeed, we observe that words in Column 4 are good indicators of specific

permission purposes.

Conciseness. We observe that the sentences recommended by CLAP are usually short

and concise. This result is due to the fact that CLAP splits long sentences into shorter

ones. Both the long sentences and the shorter sentences are added to the candidate set

(Section 4.3.1); however, it is easier for the shorter sentences to be highly voted, because

a long sentence tends to contain infrequent words that some of its sub-sentences do not

contain. Because the most voted words are frequent words, the shorter sentences are more

likely to receive high votes.

A Quantitative Study on Sentence Length. We further conduct a quantitative study
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on the lengths of the sentences recommended by CLAP and the baselines. We compute the

average and maximum lengths of the recommended sentences over all the five test collections

in Table 4.1. We find that the average length of the CLAP-recommended sentences is less

than 56% of the second shortest average length (CLAP: 8.1; T + W: 14.6, T + K: 14.3, R +

K: 15.6) while the maximum length of the CLAP-recommended sentences is less than 36% of

the second shortest maximum length (CLAP: 31, T + W: 174, T + K: 174, R + K: 86). Note

that if a recommended sentence is as long as 174 words, it must be difficult for the developer

to digest. Because conciseness is an important aspect of interpretability [120], sentences

recommended by CLAP effectively improve the worst case of interpretability against the

baselines.

4.7 RELATED WORK

Explaining Android Permissions. Compared with targeted attacks, a more prevalent

security issue in Android apps is the over-privileged problem [68], i.e., apps using more

permissions than they need. The study results by Felt et al. [28] show that users usually have

a difficult time understanding why permissions are used. Lin et al. [70, 71] examine users’

expectations toward Android permissions. Their results reveal general security concerns

toward permission usages; however, the security concerns can be alleviated by providing a

natural language sentence to explain the permission purpose.

Previous work has explored multiple approaches to explain an app’s permission, e.g.,

using the app’s description sentences [30, 89], a set of manually-annotated purposes [121],

pre-defined text templates [122], or GUI mapping [86]. However, these previous approaches

all assume that the permission explanations already exist in the app.

NLP for App Security. In recent years, NLP techniques are widely applied to various

security tasks [80, 123]. CHABADA [80] uses the topic modeling technique and outlier de-

tection techniques to discover potential malware within each app cluster. Slavin et al. [123]

construct a knowledge hierarchy that joins security sensitive APIs with natural language con-

cepts to detect violations of textual privacy policies. As a follow-up work of WHYPER [30],

AutoCog [89] uses the app description to represent the most frequent permission purposes.

4.8 CONCLUSION

In this chapter, we continue studying the problem of how to better assist mobile user’s se-

curity decision making. We propose a recommender system which can automatically suggest
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the explanation for a permission request through mining a large corpus of Google Playstore

meta-data. We propose the CLAP framework for recommending permission-explaining sen-

tences from similar apps, based on leveraging the consensus among the most similar apps

and selecting the sentences that best match the consensus. Our evaluation results have

shown that CLAP can recommend sentences that are relevant, concise, that include detailed

purposes, and that provide a diverse suite of wording options.

current app (Q) CLAP-recommended
sentences

votes(w)

CONTACTdev

• app name: lazy love

• app description:
lazy love allows you
to send messages
to your friends and
loved ones so you
don’t forget to send
to who matters...

• ground truth: auto-
matically send SMS
to contacts at sched-
uled time

• to send a scheduled
message ( from/to
phone contacts );

• can set the time
to send message (
from/to phone con-
tacts ) or email

• typed in or selected
from contacts;

• randomly selects a
message ( from/to
phone contacts ) and
person from your list
to send a message

love
send

message
feel
text

select
set

Table 4.4: Example sentences recommended by CLAP (contacts)
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current app (Q) CLAP-recommended
sentences

votes(w)

RECORDdev

• app name: build doc

• app description:
builddoc is an easy-
touse project based
photo documen-
tation application
that allows you
to capture field
issues and assign
and mange team
member’s taskse ...

• ground truth: to
record voice and au-
dio notes

• creating audio notes
using the device mi-
crophone ( to record
voice );

• use your own (
recorded ) voice to
create audio note;

• record voice notes
to explain expenses;

• compose text notes
using ( recorded )
speech to text and
voice commands;

project
task

upload
manage
assign
note
edit

Table 4.5: Example sentences recommended by CLAP (microphone)

current app (Q) CLAP-recommended
sentences

votes(w)

LOCATIONdev

• app name: menards

• app description:
home improvement
made easy, shop
departments, and
more. buy in app
or find products at
your closest store...

• ground truth: to pro-
vide local store in-
formation and direc-
tions from your loca-
tion

• plus find a store
near you;

• use the map view
to locate stores near
you;

• to find a location
near you;

• search and discover
different products
from stores near
you;

order
reorder
store
shop
item

special
pickup

Table 4.6: Example sentences recommended by CLAP (location)
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CHAPTER 5: ASSISTING BUSINESS DECISION MAKING WITH
NATURAL LANGUAGE TO SQL INTERFACE

5.1 OVERVIEW

With the large penetration rate of mobile devices and gradually increasing market of

mobile business intelligence (BI), mobile data analysis tools such as Microsoft Power BI and

Google Analytics are gradually being used by data analytics companies: a survey shows that

in 2017, 28% of BI users stated that mobile BI was already in use in their companies, with

23% planning to use mobile BI in the next 12 months and 22% planning to do so in the long

term [9].

Natural language interface for database (in short as NLIDB, also referred to as text-to-

SQL generation) has been a convenient feature in BI platforms, allowing users to easily query

the database in natural language, thus largely facilitating users who are not familiar with

the SQL grammar [35, 36, 124–127]. With the difficulty in typing and searching on mobile

devices, NLIDB can largely benefit mobile users for performing data analytics on the go.

Figure 5.1 shows two examples of NLIDB interfaces. In Figure 5.1a, when the user inputs the

following natural language question: “show me houses less than 1M in Ballard”, the system

can interactively display the execution results of the user query and incrementally apply the

filters “price < 1M ” and “city = Ballard”. In Figure 5.1b, the question answering system

in the Power BI mobile app allows the user to query the database in a natural language

conversation.

(a) (b)

Figure 5.1: Left: A snapshot of Tableau on the query “show me houses less than 1M in
Ballard.” Right: Power BI app on iOS.

Early NLIDB systems are often designed to answer user questions within a fixed do-

80



main [35, 124]. For example, the LADDER system is a natural language interface for an-

swering questions regarding US Navy ships [124]. When user questions are within a fixed

domain, NLIDB can often achieve good accuracy by enumerating any potential questions

that the user may ask. For example, the LUNAR system, which answers user questions

regarding moon rocks, can achieve exact matching accuracy of 78% [35].
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Figure 5.2: Annual citation count to papers introducing new datasets for NLIDB: single
domain datasets (displayed in dashed lines) vs. cross-domain datasets (displayed in solid
lines)

In recent years, there have been more interests in the study of cross-domain natural

language to SQL generation. For example, Figure 5.2 shows the annual citation statistics

(according to semantic scholar1) of papers that proposed text-to-SQL datasets, where single-

domain datasets are displayed in dashed lines and cross-domain datasets are displayed in

solid lines. We can observe that cross-domain datasets (i.e., WikiSQL and Spider) has

experienced a faster increase in their citation counts in the first two years.

The main difference between a single domain generation task and a cross-domain gener-

ation task is that in the latter, the system needs to generate SQL whose schema has never

been seen before. As a result, the training data usually consists of a large number of schemas,

where each schema contains a relatively small number of pairs of question and SQL query.

Such design thus provides opportunities for the trained system to adapt to new domains by

learning the generalized, meta-level knowledge and grammar rules that can be applied to

any domain.

In this chapter, we present our study on improving the performance of cross-domain com-

plex text-to-SQL generation on the Spider dataset [37], which is the largest dataset on

complex cross-domain text-to-SQL generation. We review the techniques used in the state-

of-the-art model on Spider, i.e., IRNet [38], and conduct an empirical study on its errors.

1http://www.semanticscholar.org
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Through the empirical analysis, we observe that the bottleneck of IRNet is its high column

prediction error. We propose to alleviate the column prediction error through the usage of

two components: first, we propose to apply constraints on the decoded results, for eliminat-

ing results that clearly violate certain generation rules; second, we leverage the column values

matched from the database to help both the encoding and decoding processes. The exper-

imental results show that by leveraging the three components, our approach outperforms

IRNet by 4.7%.

This chapter is organized as follows. Section 5.2 reviews existing work on text-to-SQL gen-

eration. Section 5.3 gives an overview of new challenges introduced by the Spider dataset 5.3.

Section 5.4 reviews the IRNet framework [38]. Section 5.5 introduces our framework and

Section 5.6 discusses our empirical results on IRNet. Section 5.7 discusses future work.

Finally, Section 5.8 draws conclusion.

5.2 OVERVIEW OF NLIDB AND RELATED WORK

There has been a plethora of research on mapping a natural language question to an

executable formal language statement. The problem dates back to the early 1970s and has

been a hot research topic ever since. The problem has also attracted attentions from multiple

research communities, including natural language processing, database, and programming

languages. Due to the large volume of work and diverse nature of the problem, it may be

difficult to track all the important work on this topic. In this section, we first give a simple

definition of the problem, and then summarize previous work most related to our own work

on text-to-SQL generation.

Text-to-SQL is a similar problem to the more general problem, semantic parsing. Gener-

ally, semantic parsing refers to mapping a natural language sentence to an executable logical

form for specifying relations between named entities and attributes. For example, in “Who

is the president of United States?”, president is an attribute and United States is a named

entity that is the value of president. The named entities and attributes in the logic form

(e.g., named entities, attribute names) usually come from an existing ontology (such as a

relational database [128] or a knowledge base [129]). Depending on the task, there exist two

major types of approaches for solving the semantic parsing problem: bottom-up approaches

and top-down approaches.

82



x Grammar c

D

✓ Model

z Executor y

What is the largest prime

less than 10? primes : {2, 3, 5, 7, 11, . . . }
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Figure 2: Semantic parsing framework depicting the
executor, grammar, and model. The parser and
learner are algorithmic components that are respon-
sible for generating the logical form z and parame-
ters ✓, respectively.

2. Grammar: a set of rules G that produces D(x, c), a
set of candidate derivations of logical forms.

3. Model: specifies a distribution p✓(d | x, c) over deriva-
tions d parameterized by ✓.

4. Parser: searches for high probability derivations d un-
der the model p✓.

5. Learner: estimates the parameters ✓ (and possibly
rules in G) given training examples {(xi, ci, yi)}n

i=1.

We now instantiate each of these components for our running
example: “What is the largest prime less than 10?”

Executor. Let the semantic representation be the language
of mathematics, and the executor is the standard interpre-
tation, where the interpretations of predicates (e.g., primes)
are given by c. With c(primes) = {2, 3, 5, 7, 11, . . . , }, the
denotation is Jprimes \ (�1, 10)Kc = {2, 3, 5, 7}.

Grammar. The grammar G connects utterances to possible
derivations of logical forms. Formally, the grammar is a set
of rules of the form ↵ ) �.1 Here is a simple grammar for
our running example:

(R1) prime ) NP[primes]
(R2) 10 ) NP[10]
(R3) less than NP[z] ) QP[(�1, z)]
(R4) NP[z1] QP[z2] ) NP[z1 \ z2]
(R5) largest NP[z] ) NP[max(z)]
(R6) largest NP[z] ) NP[min(z)]
(R7) What is the NP[z]? ) ROOT[z]

We start with the input utterance and repeatedly apply rules
in G. A rule ↵ ) � can be applied if some span of the
utterance matches ↵, in which case a derivation over the
same span with a new syntactic category and logical form
according to � is produced. Here is one possible derivation
(call it d1) for our running example:

1The standard way context-free grammar rules are written
is � ! ↵. Because our rules build logical forms, reversing
the arrow is more natural.

What is the largest prime less than 10 ?
(R1) (R2)

NP[primes] NP[10]
(R3)

QP[(�1, 10)]
(R4)

NP[primes \ (�1, 10)]
(R5)

NP[max(primes \ (�1, 10))]
(R7)

ROOT[max(primes \ (�1, 10))]

(1)

For example, applying (R3) produces category QP and logi-
cal form (�1, 10) over span [5 :7] corresponding to“less than
10”. We stop when we produce the designated ROOT cate-
gory over the entire utterance. Note that we could have also
applied (R6) instead of (R5) to generate the (incorrect) log-
ical form min(primes\ (�1, 10)); let this derivation be d2.
We have D(x, c) = {d1, d2} here, but in general, there could
be exponentially many derivations, and multiple derivations
can generate the same logical form. In general, the grammar
might contain nonsense rules (R6) that do not reflect ambi-
guity in language but are rather due to model uncertainty
prior to learning.

Model. The model scores the set of candidate derivations
generated by the grammar. A common choice used by virtu-
ally all existing semantic parsers are log-linear models (gen-
eralizations of logistic regressions). In a log-linear model,
define a feature vector �(x, c, d) 2 RF for each possible
derivation d. We can think of each feature as casting a
vote for various derivations d based on some coarse prop-
erty of the derivation. For example, define F = 7 features,
each counting the number of times a given grammar rule
is invoked in d, so that �(x, c, d1) = [1, 1, 1, 1, 1, 0, 1] and
�(x, c, d2) = [1, 1, 1, 1, 0, 1, 1].

Next, let ✓ 2 RF denote the parameter vector, which de-
fines a weight for each feature representing how reliable
that feature is. Their weighted combination score(x, c, d) =
�(x, c, d) · ✓ represents how good the derivation is. We can
exponentiate and normalize these scores to obtain a distri-
bution over derivations:

p✓(d | x, c) =
exp(score(x, c, d))P

d02D(x,c) exp(score(x, c, d0))
. (2)

If ✓ = [0, 0, 0, 0, +1,�1, 0], then p✓ would assign probability
exp(1)

exp(1)+exp(�1)
⇡ 0.88 to d1 and ⇡ 0.12 to d2.

Parser. Given a trained model p✓, the parser (approxi-
mately) computes the highest probability derivation(s) for
an utterance x under p✓. Assume the utterance x is repre-
sented as a sequence of tokens (words). A standard approach
is to use a chart parser, which recursively builds derivations
for each span of the utterance. Specifically, for each category
A and span [i : j] (where 0  i < j  length(x)), we loop
over the applicable rules in the grammar G and apply each
one to build new derivations of category A over [i : j]. For
binary rules—those of the form B C ) A such as (R4), we
loop over split points k (where i < k  j), recursively com-
pute derivations B[z1] over [i : k] and C[z2] over [k : j], and

Figure 5.3: An example of bottom-up approach for semantic parsing. The example is
from [130].

5.2.1 Bottom-Up Approaches

In a bottom-up approach for semantic parsing, named entities and attributes are first

identified, and then the parser incrementally merge existing components up to the root.

The merge follows certain compositional rules such as the combinatory categorical grammar

(CCG) or the context-free grammar (CFG). Figure 5.3 shows an example of bottom-up

semantic parsing. When merging two existing nodes, the parser chooses which ones to

merge through scoring the different choices of the grammar rule, e.g., by using a log-linear

function.

5.2.2 Neural-Network-based (Top-Down) Approaches

In recent years, a neural-network-based approach has shown great promise in generating

logical forms. For example, a state-of-the-art neural network model achieves 86% exact

matching test accuracy on the WikiSQL dataset [131].

Existing neural-network-based approaches for text-to-SQL generation can be categorized

into a sequence-to-sequence approach [128, 131, 132] and a sequence-to-tree approach [38,

133,134]. The latter approach grows the tree in a top-down manner by applying production

rules at each node. Compared with the sequence-to-sequence approach, the sequence-to-tree

approach can thus guarantee correct grammars in the output SQL, which is especially helpful

in complex SQL generation tasks [37]. However, one potential disadvantage of the top-down

approach is that it must select from a much larger set of candidates to generate terminal

entities. In the text-to-SQL problem, this disadvantage refers to selecting 1∼3 columns from

all columns (30 or more); thus it is very likely for the column prediction to make mistakes.

On the other hand, the bottom-up approaches select terminal entities only from the input

sentence, thus it can avoid the column selection error in the top-down approaches. For

83



(OOD) words. For example, 35% of words in
database schemas on the development set do not
occur in the schemas on the training set in Spi-
der. As a comparison, the number in WikiSQL is
only 22%. The large number of OOD words poses
another steep challenge in predicting columns in
SQL queries (Yu et al., 2018b), because the OOD
words usually lack of accurate representations in
neural models. We regard this challenge as a lexi-
cal problem.

In this work, we propose a neural approach,
called IRNet, towards tackling the mismatch prob-
lem and the lexical problem with intermediate
representation and schema linking. Specifically,
instead of end-to-end synthesizing a SQL query
from a question, IRNet decomposes the synthe-
sis process into three phases. In the first phase,
IRNet performs a schema linking over a question
and a schema. The goal of the schema linking
is to recognize the columns and the tables men-
tioned in a question, and to assign different types
to the columns based on how they are mentioned
in the question. Incorporating the schema linking
can enhance the representations of question and
schema, especially when the OOD words lack of
accurate representations in neural models during
testing. Then, IRNet adopts a grammar-based neu-
ral model to synthesize a SemQL query, which is
an intermediate representation (IR) that we design
to bridge NL and SQL. Finally, IRNet determin-
istically infers a SQL query from the synthesized
SemQL query with domain knowledge.

The insight behind IRNet is primarily inspired
by the success of using intermediate represen-
tations (e.g., lambda calculus (Carpenter, 1997),
FunQL (Kate et al., 2005) and DCS (Liang et al.,
2011)) in various semantic parsing tasks (Zelle
and Mooney, 1996; Berant et al., 2013; Pasupat
and Liang, 2015; Wang et al., 2017), and previ-
ous attempts in designing IR to decouple meaning
representations of NL from database schema and
database management system (Woods, 1986; Al-
shawi, 1992; Androutsopoulos et al., 1993).

On the challenging Spider benchmark (Yu et al.,
2018c), IRNet achieves 46.7% exact matching ac-
curacy, obtaining 19.5% absolute improvement
over previous state-of-the-art approaches. At the
time of writing, IRNet achieves the first position
on the Spider leaderboard. When augmented with
BERT (Devlin et al., 2018), IRNet reaches up to
54.7% accuracy. In addition, as we show in the ex-
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column ranges over distinct column names in a
schema. table ranges over tables in a schema.
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Figure 3: An illustrative example of SemQL. Its cor-
responding question and SQL query are shown in Fig-
ure 1.

periments, learning to synthesize SemQL queries
rather than SQL queries can substantially benefit
other neural approaches for Text-to-SQL, such as
SQLNet (Xu et al., 2017), TypeSQL (Yu et al.,
2018a) and SyntaxSQLNet (Yu et al., 2018b).
Such results on the one hand demonstrate the ef-
fectiveness of SemQL in bridging NL and SQL.
On the other hand, it reveals that designing an ef-
fective intermediate representation to bridge NL
and SQL is a promising direction to being there
for complex and cross-domain Text-to-SQL.

2 Approach

In this section, we present IRNet in detail. We first
describe how to tackle the mismatch problem and
the lexical problem with intermediate representa-
tion and schema linking. Then we present the neu-
ral model to synthesize SemQL queries.

Figure 5.4: An example of top-down approach for semantic parsing. The example is from [38].

example, in the tree in Figure 5.4, when generating the column name “highschooler”, the

top-down approach must correct map this column name to the span “high schoolers” instead

of other words in the input sentence: “Give the names of high schoolers whose grades are A

and who have more than 3 friends.”.

In a top-down approach, there exists a long distance between the terminal word and the

corresponding word in the input sentence. In our experiments, we have also observed signif-

icant amount of errors in the column prediction results. However, to the best of our knowl-

edge, the majority of the more recent work on text-to-SQL generation rely on the top-down

framework [38,128,131–136]. We believe the reason why state-of-the-art work has not lever-

aged bottom-up approach is of two folds: first, the search space for column/table/aggregation

functions is relatively small (there are usually tens of columns to choose from, compared to

millions of named entities), therefore it is tractable to cast this problem as a classifica-

tion problem; second, due to the abbreviation and highly contextualized semantic 5.3, it

is difficult to find out the complete set of columns/tables/aggregation functions by simply

matching the question against the table columns, etc.

5.2.3 Learning vs. Non-Learning Approach

The learning-based approach for semantic parsing was first proposed in the early 1990s [31,

137]. Before the learning-based approach, multiple pieces of work have built systems without

using machine learning [35, 36, 124, 138]. For example, the Precise [36] system proposes a

bottom-up approach of text-to-SQL generation by aligning each word in the input sentence

to either a value, a column or a table name in the database. They find that 80% of the

questions are usually simple questions where it is relatively easy to find such alignment.
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As a result, the system can achieve a rather high accuracy without having to involve any

probabilistic inferences. The major challenge here lies in the ambiguity of words in the

natural language sentence [139]. Figure 5.5 shows an example, where the word “HP” can

either refer to a value of the column “Platform” or “Company”. On the other hand,

the word “Unix” can only refer to the value of the column “Company”. Meanwhile, we

know that there must be one word referring to the value of “Platform” because the word

“system” in the question refers to “Platform”. As a result, the word “HP” can only refer

to the value of “Platform”. They leverage the maximum flow algorithm to disambiguate

the words in the natural language sentence.

 

  

           SYNTACTIC MARKERS            TOKENS
                      job    system    HP      Unix      what  are   the   on   a

              JOB

                     Developer    System Admin           what   Description

                whatPlatform

  Stratify              HP                         what 

LEXICON

SQL QUERY

Company

     HP      Unix

FROM JOB WHERE Platform = ’DescriptionSELECT DISTINCT HP ’ AND Company = ’ Unix ’;

    are  the  HP  jobs  on  a  Unix   system?What

     QUESTION

3. THE PRECISE SYSTEM

3.1 PRECISE in Action

Figure 5.5: The Precise system [36].

The Precise system proves to be effective on a single domain dataset [31], however, it must

know the lexical mapping beforehand. The unsupervised lexical mapping problem, as simple

as it seems to be [130], is in fact quite difficult in the Spider dataset. The difficulty lies in

the contextualized semantics of column names (e.g., pet age and age, Section 5.3).

5.2.4 Domain Adaptation for Cross-Domain text-to-SQL Generation

Since the introduction of cross-domain datasets [37, 128, 140], there has been a few work

that focuses on the domain-adaptation for cross-domain text-to-SQL generation [141–143].

For example, Herzig et al. [143] uses a shared encoder-decoder to model the shared production

rules across different domains. Dadashkarimi et al. [141] find that adversarial examples can

be identified on the most useful example for training even from a domain that is far from

the target domain. Su et al. [142] models the domain adaptation by referring to the word

analogy task in word embedding. Between the two questions “In which seasons did Kobe

Bryant play for the Lakers?” and “When did Alice start working for Mckinsey?”, the relation

between “Kobe Bryant” and “Lakers” is analogous to that between “Alice” and “Mckinsey”,
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therefore training on the first model allows the model to learn to predict “Mckinsey” when

seeing the word “Alice”.

Meanwhile, state-of-the-art work in the WikiSQL and Spider dataset has all incorporated

the BERT model [38, 131] in their frameworks. The basic idea of BERT is to pre-train

a general model, then transfer a specific model by fine-tuning the pre-trained model on

down-stream task. Guo et al. [38] has observed 9% increase in the exact matching accuracy

by incorporating BERT in their model. Meanwhile, since BERT has many built-in atten-

tion mechanism, it also allows down-stream task to reduce the complexity of the attention

mechanism in their models [38].

5.2.5 Intermediate Representation

Semantic parsing techniques have often leveraged intermediate representation to reduce

the complexity of either the natural language question or the logic form. The natural lan-

guage question is usually the more complicated part because each terminal in the logical form

can be rephrased to multiple different natural language utterance, as a result, the problem of

natural language to logical form is loosely a many-to-one mapping. To reduce the fuzziness

in the natural language question, existing work has tried to rephrase the natural language

question into a canonical version of natural language question [142,144], i.e., each logic form

is uniquely mapped to a canonical natural language question through: (1) the mapping from

compositional production rule to a compositional natural language template; (2) the unique

lexical mapping.

The intermediate representation can also be applied to the target logical form, when the

target grammar is too complicated. For example, Guo et al. [38] designs an intermediate

grammar rules called semQL, which is simpler than the general SQL grammar. Since the

Spider dataset has a simpler set of grammar, such intermediate representation can effectively

reduce the search space, which proves to useful. Through using the intermediate grammar

alone, it outperforms SQL grammar-based sequence-to-tree approach by more than 10%.

5.2.6 Other Related Work

There has been multiple branches of work addressing additional issues of semantic parsing.

We briefly summarize them into the following three categories.
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Interactive/Conversational NLIDB

Due to the ambiguity in natural language question, it can be helpful to involve human in

the loop [145–148]. For example, the user may have missed important information in the

natural language utterance, thus the system can propose question to help the user complete

the information [145]. Gur et al. [148] asks the user to select from options where the system

is unclear of which column to select, where the system decides which question to ask by

leveraging a recurrent neural network to predict the potential errors in the output SQL

query. They also allow users to select from natural language options instead of asking the

user to confirm logical forms which are difficult to understand. The SparC [149] dataset is

built on top of Spider which supports conversational NLIDB tasks such as confirmation and

disambiguation.

Execution-based Generation

Because the target SQL statement is an executable logic form, when an actual database

exists, we can execute the result which can be used as the feedback for the correctness in the

generation. Berant et al. [150] propose that while it is too expensive for annotators to label

the entire logic form, it is easier for them to annotate a short answer for the input question.

The (question, answer) pair can be used to train a parser whose execution result matches

the answer. Wang et al. [151] proposes a simple strategy of executing the generated SQL

statement against the database during the decoding stage. When the SQL statement has a

run-time error or empty result, it can effectively correct such mistake. Among state-of-the-

art methods on the WikiSQL leaderboard [152], the execution-guided decoding has improved

the top results by an average of 3-4%. Zhong et al. [33, 128] has used the execution result

in the training step as the reward for reinforcement learning, so that continuing training

using RL further improve the results. In particular, Zhong et al. [33] is on natural language

to regular expression generation, where they observe that existing datasets often contain

only one target regex where many more semantically equivalent regex can all be the correct

answer. They propose to generate semantically equivalent regex using the test generation

technique to augment the training data. By executing the results, they are able to identify

the regex where the parser would most likely make mistakes.
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Program Repair

The program repair technique can be used to correct the mistake in the generated SQL [147].

Yaghmazadeh et al. [147] uses a multi-stage process to generate the SQL: first, they lever-

age the SEMPRE parser [150] to obtain the top-k most likely SQL statement, then they

enumerate all SQLs and identify the type-based errors in the results, e.g., the original SQL

may contain a span which do not exist in the database, which can be fixed by splitting such

spans into smaller spans and match against the database values as well as type-based rules

(e.g., the value 2010 must under a column named year).

5.3 OPEN CHALLENGES IN THE SPIDER DATASET

The Spider dataset [37] is the largest dataset for complex cross-domain text-to-SQL gen-

eration. Similar as many existing work in semantic parsing, the dataset is created through

crowd-sourcing. The dataset contains 200 databases, each database contains multiple ta-

bles. For each database, the annotators first think of a list of queries they want to ask, then

for each query, they rephrase the natural language question into 4 to 10 human-readable,

natural questions. The resulting dataset consists of 10,891 questions. Ever since the data

was released in Oct 2018, there has been over 20 papers on the leaderboard. IRNet [38]

had been the state-of-the-art approach, achieving an exact matching accuracy of 61.9%. Al-

though future work has achieved a higher accuracy, none of their code is available to us at

the time of writing this dissertation. As a result, in this dissertation, we treat IRNet as the

state-of-the-art approach and analyze the open challenge that has not been solved yet by

IRNet.

5.3.1 Contextualized Semantics

One of the major challenges in the Spider dataset is the lexicon mapping problem, which

is often referred to as schema linking [38]. As discussed in Section 5.2.2, in the top-down

neural network approach, there exists a long distance from the terminal node to the question,

which often results in failing to attend to the correct word and a significant amount of column

prediction error (see Section 5.6). Meanwhile, IRNet [38] observes that by mapping each

question word into a column, table or value, the exact matching accuracy can improve by

8%. However, the schema linking in IRNet is limited to the case where the entire in a column

or table exact matches with the span in the input sentence, as a result, it often miss cases

where the the column name is rephrased.
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Database column names resemble natural language, but their meanings are often contex-

tualized. This is because multiple columns may all be related to the question, and goal is to

tell between them which one is more relevant. For example, in the following question: “Find

number of pet owned by students whose age is larger than 20 ”, there exists two columns

pet age and age, where the latter column is the age of the owner. The naming convention

of database columns determines that many columns are abbreviated, creating more chal-

lenges inferring the context. For example, one column name is called “max temperature f ”

while another column value is called “f ” which is an value of the column “sex”. It is difficult

to infer that the two “f ” has different meanings.

5.3.2 Domain Adaptation

Since the dataset is cross-domain, there exists challenges in domain adaptation. For ex-

ample, one question in the development set is “What is the average, minimum and maximum

age of singers from France?” and one column is called Average. While the correct SQL

statement is: SELECT AVG(age), MAX(age), MIN(age) FROM singers WHERE country =

‘‘France’’, IRNet mistakenly matches the column Average and generates the follow-

ing SQL: SELECT AVG(Average), MAX(age), MIN(age) FROM singers WHERE country =

‘‘France’’. Meanwhile, non of the columns in the training data is named Average. As a

result, when IRNet sees the unseen column Average, it follows what has been learned in the

training dataset, i.e., maximize the match between the current slot and the word “average”.

5.3.3 Handling Non-Greedy Cases

In a top-down sequence-to-tree generation paradigm, the terminal column is furthest from

the input sentence. Although the question information is encoded and passed on to the

column/table/aggregation function selection stage, the column prediction may not work

well under cases where the column selection depends on other information (e.g., aggregation

function, other columns). One example is to decide whether the output SQL contains the

aggregation function COUNT. COUNT usually exist when the input sentence contains the phrase

“number of ”, but it often does not exist when there is a column in the database called

num of something. In such cases, the column should be selected instead of the aggregation

function, which requires the model to look around and then decide which column to choose.

The example in Section 5.3.2 containing column Average is another non-greedy case. In

those non-greedy cases, IRNet often fail to predict the correct column/table/aggregation

function.
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5.4 IRNET FRAMEWORK

Because our work is based on IRNet, in this section, we review the IRNet framework

proposed by [38].

(OOD) words. For example, 35% of words in
database schemas on the development set do not
occur in the schemas on the training set in Spi-
der. As a comparison, the number in WikiSQL is
only 22%. The large number of OOD words poses
another steep challenge in predicting columns in
SQL queries (Yu et al., 2018b), because the OOD
words usually lack of accurate representations in
neural models. We regard this challenge as a lexi-
cal problem.

In this work, we propose a neural approach,
called IRNet, towards tackling the mismatch prob-
lem and the lexical problem with intermediate
representation and schema linking. Specifically,
instead of end-to-end synthesizing a SQL query
from a question, IRNet decomposes the synthe-
sis process into three phases. In the first phase,
IRNet performs a schema linking over a question
and a schema. The goal of the schema linking
is to recognize the columns and the tables men-
tioned in a question, and to assign different types
to the columns based on how they are mentioned
in the question. Incorporating the schema linking
can enhance the representations of question and
schema, especially when the OOD words lack of
accurate representations in neural models during
testing. Then, IRNet adopts a grammar-based neu-
ral model to synthesize a SemQL query, which is
an intermediate representation (IR) that we design
to bridge NL and SQL. Finally, IRNet determin-
istically infers a SQL query from the synthesized
SemQL query with domain knowledge.

The insight behind IRNet is primarily inspired
by the success of using intermediate represen-
tations (e.g., lambda calculus (Carpenter, 1997),
FunQL (Kate et al., 2005) and DCS (Liang et al.,
2011)) in various semantic parsing tasks (Zelle
and Mooney, 1996; Berant et al., 2013; Pasupat
and Liang, 2015; Wang et al., 2017), and previ-
ous attempts in designing IR to decouple meaning
representations of NL from database schema and
database management system (Woods, 1986; Al-
shawi, 1992; Androutsopoulos et al., 1993).

On the challenging Spider benchmark (Yu et al.,
2018c), IRNet achieves 46.7% exact matching ac-
curacy, obtaining 19.5% absolute improvement
over previous state-of-the-art approaches. At the
time of writing, IRNet achieves the first position
on the Spider leaderboard. When augmented with
BERT (Devlin et al., 2018), IRNet reaches up to
54.7% accuracy. In addition, as we show in the ex-
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column ranges over distinct column names in a
schema. table ranges over tables in a schema.
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Figure 3: An illustrative example of SemQL. Its cor-
responding question and SQL query are shown in Fig-
ure 1.

periments, learning to synthesize SemQL queries
rather than SQL queries can substantially benefit
other neural approaches for Text-to-SQL, such as
SQLNet (Xu et al., 2017), TypeSQL (Yu et al.,
2018a) and SyntaxSQLNet (Yu et al., 2018b).
Such results on the one hand demonstrate the ef-
fectiveness of SemQL in bridging NL and SQL.
On the other hand, it reveals that designing an ef-
fective intermediate representation to bridge NL
and SQL is a promising direction to being there
for complex and cross-domain Text-to-SQL.

2 Approach

In this section, we present IRNet in detail. We first
describe how to tackle the mismatch problem and
the lexical problem with intermediate representa-
tion and schema linking. Then we present the neu-
ral model to synthesize SemQL queries.

Figure 5.6: SemQL production rules. The figure is from [38].

SemQL. SemQL is a set of grammar rules developed in IRNet [38]. SemQL is the first

sequence-to-tree framework that combines all the production rules into an end-to-end frame-

work (in contrast to previous work where each production rule is trained with a stand-alone

module). Meanwhile, it simplifies the production rule (compared with the general SQL

grammar) by tailoring to the grammar in the Spider dataset. This results in a much smaller

search space of 46 production rules (Figure 5.6). For example, the SELECT statement in

Spider dataset can select up to 6 columns. The IRNet framework separates all the rules into

two parts: the sketch generation (i.e., Z, R, Select, Order, Superlative, and Filter) and the

terminals (i.e., A (aggregation function), C (column), and T (table)). Here each aggregation

function, column and table are grouped into one slot.

Encoding/Decoding. IRNet follows the same sequence-to-tree encoding paradigm through

LSTM (Figure 5.6). First, the sketch is encoded with a biLSTM while the question and

columns are encoded using BERT [153]. Then the encoded vectors are passed to the

sequence-to-tree framework as in Figure 5.7. During decoding, a sketch is first generated

using the same infrastructure, then the A-C-T slots are filled, both following beam search.

Schema Linking. Due to the long distance between A-C-T slots and the correct question

word to attend to, it is difficult for the column/table/aggregation function predictor to attend

to the correct word in the input sentence. To remedy this issue, IRNet proposes a schema

linking scheme which assigns each question word a label as a table word, column word, etc.

Then they encode the word type, and they show that it is effective in guiding the LSTM to

find the corresponding word in the sentence (8% improvement).
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Figure 5.7: The sequence-to-tree generation scheme in IRNet.

BERT Encoding. IRNet uses BERT [153] to encode the question as well as the column

names through concatenating the question with all columns, separated by the “[SEP]”. They

find another 9% improvement by adding BERT.

Pre-Selection of Columns. Like the bottom-up approach for semantic parsing, if the

columns can be selected first instead of last, the generator then does not have to select a

wrong column. Therefore IRNet introduces a module for pre-selection of columns, which

aims to detect what columns are mentioned in the input sentence. They use BERT and

margin ranking loss to compute the pre-selected columns, the column selector achieves 83%

accuracy, and can improve the final exact matching accuracy by 1%.

5.5 IMPROVING IRNET

As discussed in Section 5.4, one major problem with IRNet is that it often fails to predict

the correct column. To further quantify this issue, we conduct an empirical analysis by

breaking down the errors of IRNet. The result of this analysis is shown in Figure 5.1 in

Section 5.6. Based on these results, in this chapter, we focus on studying how to reduce the

column/table prediction error. Our framework consists of two parts: constrained decoding,

and a column matcher.

5.5.1 A Constrained Decoding Framework

IRNet has significantly reduced the column prediction error on Spider dataset. However,

IRNet still frequently fails to predict columns that could be detected by a keyword matcher.

For example, given the question: “Find the number of distinct name of losers”, IRNet pre-
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dicts the following SQL: SELECT COUNT(T1.winner name) FROM matches AS T1. Meanwhile,

there exists another column loser name.

Using a keyword matcher, we can easily detect that the above generated SQL is mistaken:

the fact that “loser” appears in the question indicates that the output SQL must contain

at least one column or table containing the word “loser” or its synonym. As a result, we

can examine multiple prediction results and reject SQL outputs that does not meet certain

criteria defined by hard constraints. We explore the following constraints.

Grammar Rules. We constrain the following exact matching rules on the semQL gram-

mar: (1) if $col1 $math opr (SELECT $col2) appear in the generated SQL, where the

math operation may be <, >, =, etc., $col1 and $col2 must be comparable, thus we con-

strain them to be the same column or one of them is the foreign key of another; (2) the same

A-C-T tuple cannot appear twice in the same SELECT statement.

Column Value. If a column value exists in the output SQL statement, it must be

mentioned in the natural language question. Therefore by matching the natural language

question against the database values, we can detect what values exists in the SQL statement.

For all values detected, we constrain that the corresponding column must exist in the output

SQL.

Table Name. For each question word, if the word is not a syntax marker (e.g., stop

words and words referring to SQL keywords such as “how”, “many”, and “maximum”), it

must correspond to either a table name or a column name. Therefore we constrain that each

such word must exist in the output SQL as either a table name or a column name.

5.5.2 Column Value Matching

We match the question against the column value using keywords-based matching. Because

as long as a column value is mentioned in the output SQL, it must be mentioned in the

question, theoretically speaking, we should be able to achieve close to 100% precision and

recall.

Matching String. Matching strings is generally easier, however, when the database is

large, it is more likely to introduce mismatched cases, for example, when a cell value is a

stopword. To reduce such mismatching cases, we remove stop words, and further match the

column name against the question.

Matching number. Number matching is clearly more difficult than string matching. If

a number appear in the natural language question, the exact number may or may not appear

in the table cell, because it may be used for comparing the value from a column. As a result,

whenever the question contains a number, we first identify all the columns whose values
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are numbers, then conduct pairwise comparison between each pair of candidate column

(Algorithm 5.1). If a column col1 is both similar to the question nl than another column

col2, and it also contains a value val1 that is closer to the matched number than any value

val2 from col2, column col2 is eliminated.

Algorithm 5.1: Matching Numbers

1 v ← Matched numerical token in sentence nl
2 S ← All columns with numerical value type
3 posv ← nl.pos(v)
4 for col1 ∈ S do
5 val1 ← arg minv′∈col1.values dist(v

′, v)
6 for col2 ∈ S do
7 val2 ← arg minval∈col2.values dist(v

′, v)
8 if similarity(val1, v) > similarity(val2, v)&similarity(col1, nl) >

similarity(col2, nl) then
9 is larger(col1, col2)← True

10 end

11 end

12 end
13 for col1 ∈ S do
14 if ∃col2, is larger(col1, col2) = True then
15 S ← S − {col1}
16 end

17 end

Matching Column *. How to detect whether the all column symbol * exist in the

output? How to detect what value is associated with it? We observe that when the all

column symbol is used along with a value, it is usually for comparing the count of rows with

a small number, therefore we include * if we detect the sentence consists of value comparison

and the compared value is smaller than 5.

Resolving Column Ambiguity through Distance-based Heuristics. In Algo-

rithm 5.1, we compare between the similarity of two columns with the question: similarity(col1, nl)

vs. similarity(col2, nl). The similarity is computed based on the following rules: first, if

words from one column all appear in the question while another column does not, we elim-

inate the second column; second, if both columns contain words that all appear in the

question, we compare the distance-based similarity between the two columns. In Figure 5.8,

we show an example where the value 20 is matched with two columns: pet age and age.

Both column and table names match with words in the question, however, the distance be-

tween the information of owner age is closer to the target value than that if the pet age.
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Such distance-based heuristic agrees with the intuition that when a question specifies the

relation between certain column and the value condition, the location of the column name

in the sentence is often close to the location of the value.

/ 54!1

Find number of pet owned by student who are older than 20 

pet_age age3 20pet owner

col1tab1 val1 col2tab2 val2

dist1 = 8

dist2 = 7

Figure 5.8: Distance-based heuristics for resolving column ambiguity: the information re-
garding owner age is closer to the target value 20 than pet age.

The matched column value is used in three places: first, we append the column value

to the end of the column name before encoding it with BERT, where this BERT encoding

is used in both the pre-selected column predictor in IRNet framework 5.4 and IRNet; in

addition, we apply constraints on the columns corresponding to the matched values.

Evaluation of the Column Matcher. Our column matcher achieve 93.4% exact match-

ing accuracy and 2% false positive rate, which shows that keywords matching can be effective.

There exists some caveats with keywords matching for table and column names, for example,

in Figure 5.8, if the word “owner” is absent, it is difficult to match the column age because

of the mismatch between student and owner. The natural language and column names are

relatively well aligned, therefore our column matcher may not work for more noisier data. A

potential solution for making it more robust is to train the distance-based heuristics instead

of relying on hard keywords matching.

5.6 EXPERIMENTAL RESULTS

We evaluate the performance of IRNet as well as the effectiveness of our approach for

improving IRNet. We summarize the results in Table 5.1.

We are able to reproduce a result of 0.601 with IRNet code + BERT model proposed

in [38] using a batch size of 32. Notice the the absolute value in accuracy may be subject

to the evaluation script or other configuration of IRNet, we aim to demonstrate the relative

94



acc
sketch wrong sketch correct

sketch err sketch&col
error

sketch
correct

col
error

agg
error

tab
error

Our Method 0.648 0.168 0.145 0.153 0.078 0.037 0.094
-constraint 0.627 0.160 0.143 0.169 0.091 0.034 0.114

IRNet 0.601 0.161 0.135 0.237 0.115 0.031 0.125

Table 5.1: Evaluation results of our method against IRNet. By leveraging constraints and
column value, our approach outperforms IRNet by 4.7%. Our approach is most helpful for
correcting column and table mistakes.

gain that different parts of our model contribute to rather than focusing on reproducing the

absolute value.

Table 5.1 shows that our approach outperforms IRNet by 4.7%. In particular, it is most

effective for reducing the column and table errors. Meanwhile, the sketch error rate has

increased. This means that some output SQL had correct sketches yet does not meet the

constraints, and while maintaining the sketch and varying the A-C-T, we could not find any

A-C-T that satisfy the constraint, so as a result, we have to move on to another sketch where

the sketch is incorrect but it contains an A-C-T that satisfy the constraint. There are two

reasons behind the increase of sketch error: first, the constraint are incorrect. Many of our

hard constraints are based on manual observations of the rules, which may be subject to our

own bias; second, the constraints are correct, but to the entire decoded result is biased or is

over-fitted.

5.7 EXTENSION OF CURRENT WORK

The experimental result in Section 5.6 reveals the effectiveness of constraint-based decod-

ing and leveraging column values. By inspecting the current errors, we propose the following

directions for future work:

Performing Local Repair Instead of Using Constraint. By applying constraints, we

reject the entire SQL query as long as one part of it is incorrect, if, however, we could identify

which part of the SQL is wrong and repair the sub-component, we can more efficiently find

the right answer.

Replacing Beam Search with Less Greedy Decoding Approaches. IRNet uses

beam search, where the terminal predictors for column/table/aggregation functions are far

from the sentence and can easily make mistakes. Furthermore, the decoding is performed

in a greedy way, so that each result may achieve local maximum but not global maxi-

mum when being combined together. For example, for the input question: “What are
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the countries having at least one car maker? List name and id”, the correct select clause

is: SELECT T1.CountryName , T1.CountryId FROM COUNTRIES while IRNet outputs the

following: SELECT T1.CountryName, T2.Id FROM countries AS T1 JOIN cars data AS

T2. For the second column, IRNet selects the column Id, so that the selected columns come

from two different tables. However, the second table cars data does not appear in the

question, but because the column is generated before the table, the table can only select

from those table which are compatible with the column Id, resulting in the mistake.

5.8 CONCLUSION

In this chapter, we study assisting mobile users making business decisions in data analytics

through suggesting SQL query as the external knowledge (given their input question), where

we leverage the Spider dataset [37] for cross-domain complex text-to-SQL generation as the

data source. We give a systematic overview of existing work on this problem, compare

between them, and discuss their advantages in the Spider dataset. Then we review the open

challenges in the Spider dataset, and conduct a comprehensive study on the performance of

IRNet, the state-of-the-art framework on Spider, by analyzing the break-down error rates.

Based on the result of our analysis, we propose a general constrained decoding framework

as well as an algorithm for matching the natural language question against the database

values. In total, we observe 4.7% improvement over IRNet in the exact matching accuracy

of the output SQL. We propose two directions of future work on the Spider dataset.
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CHAPTER 6: CONCLUSION

6.1 SUMMARY

In this dissertation, we identify the general challenges of users’ decision making on mobile

devices. Different from decision makings on larger screen devices, users’ decision making

on mobile devices are made hindered by the small touch screen and exclusive page layout

(Figure 1.1b). Their knowledge gap for information access (such as keywords searching,

question answering, querying databases) is expanded. To bridge mobile users’ knowledge

gap in decision making, we propose to first study or improve three research problems:

• Expanding user queries with numerical facet range suggestions. Researches show that

users’ keywords queries are often as short as a few words, omitting important fine-grained

information [13]. As a result, the search engine can suggest a list of numerical ranges for users

to choose from, so that users who are not familiar with the data can easily specify their fine-

grained information needs. By leveraging a 2-month user search log from www.walmart.com,

we propose the first formal study of numerical facet range partition. We formally define a

metric for evaluating the effectiveness of a range partition algorithm, then we propose three

algorithms for optimizing this metric. The evaluation results on our Walmart search log

shows 16-21% increase against the baseline approach.

• Retrieving the permission purpose explanation from app description data. Android

permission system (Android 6.0 and later) frequently requests users’ private information

(e.g., location, contact list). Because the same permission group can be requested for many

different reasons, users often have questions on the fine-grained purpose behind the request.

Mobile apps can provide a natural language sentence explaining the purpose, but it is unclear

whether such explanations in existing apps are sufficient. We conduct the first large-scale

measurement study on Android permission rationale. We observe that only one fourth of

existing apps contain at least one rationale, existing rationales are also not interpretable

enough. As a result, we further propose a rationale recommender system by retrieving

the relevant permission-explanation sentence from similar apps’ descriptions. Experimental

results show that our system recommends sentences that are 45% more relevant than the

baseline approach. Moreover, the explanation sentences recommended by our system show

good characteristics of interpretability.

• Generating complex cross-domain SQL from natural language input. A natural lan-

guage to database interface helps users who are not familiar with SQL language to query

the database using natural language. With the rise of intelligent data analytics platforms
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(e.g., Tableau, Microsoft Power BI), it is a critical problem to generate SQL queries on

complex cross-domain datasets. However, state-of-the-art performance on such task has not

yet achieved a good accuracy for being used in real application. As a result, we investi-

gate methodologies for improving the performance of complex text-to-SQL generation. By

proposing two approaches for improving the column prediction accuracy, we observe a 4.7%

improvement in the overall accuracy.

6.2 FUTURE WORK

6.2.1 Assisting Security Decision Making

Measuring Interpretability of Permission Explanations

In our permission recommender system (Section 4), we have not had a systematic way

to directly evaluate the interpretability of explanation sentences. In future work, we plan

to investigate more direct evaluation than our current evaluation. In particular, we plan to

measure the interpretability from an end-user ’s perspective, e.g., investigating the following

research questions: how often do explanations confuse average users? Are there any general

rules that developers could follow to improve the interpretability of permission explanations?

How to effectively explain rare permission usages?

Checking the Actual Application Behaviors

One deficiency in our recommender system for assisting user security decision making

(Chapter 4) is that the permission explanation is not “fact checked”, i.e., the permission

purpose from a similar app may be different from the true purpose of the current app, and if

the developer does not examine carefully, the app may claim a wrong purpose for permission

request which adds to the user’s security concerns. To make the explanation more secure,

one has to examine the natural language permission explanation against the true behavior of

the app. The true behavior of an app can be represented using the result of a static analysis

or dynamic analysis. For example, by leveraging the PScout ontology [78]. Although it is

challenging to map the free style natural language to the structured access control hierarchy,

one potential approach is to represent each node in the hierarchy using textual information

extracted from its API documents, and leverage paraphrase detection techniques to map

each natural language to one or more node in the hierarchy.
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6.2.2 Improving Natural Language Interface

Leveraging External Knowledge-base or Ontology

Using external knowledge, we could bridge the gap in text-to-SQL generation. Consider

the example: “Find the number of pets owned by students who are older than 20 ”, where

the word student corresponds to column owner. By leveraging ontologies such as Freebase

and DBPedia, we can know that both owner and student belongs to the general category

person. Furthermore, external knowledge-base can tell us semantic information which helps

the model better predicts SQL that meets people’s common sense. For example, suppose a

column is called “medal” and it contains three unique values: “gold, silver, copper”. The

fact that this column contains 3 unique values is a commonsense knowledge, thus we can

expect the user would not ask such question, as a result, we can reduce the probability that

such query is generated.

Removing Column Value Requirement

In Chapter 5 we use column values to improve the results of column prediction. How-

ever, due to the database scale and privacy issue, one question is how can we reduce this

requirement of data. When we do not have access to column values or a limited amount

of column values, we could potentially leverage the value in the following way: first, enu-

merate all candidate spans in the question and encode them with a vector representation;

second, for all table columns, encode the column and available few values; third, construct a

span x table column matrix and and train the span and column selection at the same time.

The matrix could potentially learn knowledge such as: when observing the column name

sourceairport and value name JFK, it knows that EWR is a similar value to JFK.

6.3 SYNERGIES BETWEEN THE THREE INVESTIGATIONS

6.3.1 Query Expansion in Cross-Domain NLIDB

Similar as exploratory search in a search engine, in NLIDB, users may have an exploratory

information need, some users may also use more vague words, e.g., in the question “what are

some good restaurants in San Francisco?”, the word “good” has a relatively vague meaning.

While user question is simple, they may prefer some values better than others. Different

from the query expansion problem in a single-domain scenario (e.g., user preferences on
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“Desktop” facet values), the query expansion problem in a cross-domain setting is more

challenging because the system has to make inference over columns and values it has never

seen before.

For example, Microsoft Power BI supports an interactive mode of natural language ques-

tion (Figure 6.1). Upon seeing a new table, how to infer the user’s next word given their

natural language question? Our study into cross-domain NLIDB shows that, even though

tables do not share schemas, we can still learn meta-level knowledge that is shared across

all databases. One question is whether we can learn such meta-level preference in a similar

way as we learn meta-level column selection rules.

Figure 6.1: The Interactive NLIDB in Microsoft Power BI
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