Data Structures

Sorting

CS284

Objectives

- To learn how to implement the following sorting algorithms:
- selection sort
- bubble sort
- insertion sort
- shell sort
- merge sort
- heapsort
- quicksort
- To understand the differences in performance of these algorithms, and which to use for small, medium arrays, and large arrays

Shell Sort: A Better Insertion Sort

Shell Sort: A Better Insertion Sort

- Insertion sort takes $\mathcal{O}\left(n^{2}\right)$ time
- In the worst case, needs $O\left(n^{2}\right)$ comparisons/swaps
- Disadvantage: swap distance can only be 1
- Can we improve the time complexity if we allow long-distance swaps?
- Shell sort: long distance insertion sort
- History of shellsort:
- It is named after its discoverer, Donald Shell
- The time complexity depends on the actual distance being used
- $O\left(n^{3 / 2}\right)$ is a common bound for its time complexity
- People have improved this bound over the years, by constructing different distance series

Disadvantage of Insertion Sort

1st round:
SORTEXAMPLE
OSRTEXAMPLE

6-th round:
EORSTXAMPLE
EORSTXXMPLE
EORSTTXMPLE

- Each time can only swap by distance-1

```
public void insertion_step(E[] a,
int this_idx, int stride) {
E this_val = a[this_idx];
while (this_idx >= stride && this_val
.compareTo(a[this_idx - stride]) < 0)
    a[this_idx] = a[this_idx - stride];
    this_idx-= stride;
        }
        a[this_idx] = this_val;
    }
```

- What if we can swap by longer distance?

Swap distance/stride h

```
stride = 7
SORTEXAMPLE
```

stride $=3$
SORTEXAMPLE
SORTEXAMPLE
stride $=1$
SORTEXAMPLE
SORTEXAMPLE

7-sequence
SM OP RL TE E X A

3-sequence
STAL OEME
R X P

1-sequence
SORTEXAMPLE

Shell sort Algorithm

```
public void shell_sort(E[] table) {
    int[] gap_seq = {5, 3, 1};
    for (int h: gap_seq) {
        for (int pos = 1; pos < table.length; pos ++) {
        insertion_step(table, pos, h);
        }
} }
```

swap count $=17$

Shell sort Algorithm

```
public void shell_sort(E[] table) {
    int[] gap_seq = {5, 3, 1};
    for (int h: gap_seq) {
        for (int pos = 1; pos < table.length; pos ++) {
            insertion_step(table, pos, h);
        }
} }
```

swap count $=17$

```
public void insertion_sort(E[] table) {
    for (int pos = 1; pos < table.length; pos++) {
        insertion_step(table, pos, 1);
    }
}
```

swap count $=36$, how does Shell sort require fewer swaps while having more loops?

Shell sort: execution trace

stride $=7$
SORTEXAMPLE
MORTEXASPLE
MORTEXASPLE
MOLTEXASPRE
MOREEXASPLT

	stride =
3-seq\#0	MOREEXASPLT
3-seq \#0	EORMEXASPLT
3-seq\#1	EORMEXASPLT
3-seq\#2	EERMOXASPLT
3-seq\#0	EERMOXASPLT
	(insertingAtoEM)
3-seq\#0	AEREOXMSPLT
3-seq\#1	AEREOXMSPLT
3-seq\#2	AEREOXMSPLT
(inserting toRX)	
3-seq\#2	AEPEORMSXLT
3-seq\#0	AEPEORMSXLT
3-seq\#1	AEPEORLSXMT

Analysis of Shell Sort

- Why is shell sort correct? When gap $=1$, reduce to insertion sort
- How does Shell sort reduce \# swaps and \# comparisons?
- Answer: the fact that the array is being 5-sorted and 3-sorted makes the algorithm require fewer swaps/comparisons in 1 -sorting
- h-sort: the process of sorting all the h-sequence

Proposition

Proposition. After an array is h-sorted then k sorted $(k<h)$, the array remains h-sorted

Proof. We can prove the proposition by contradiction.
Suppose the proposition is false, that means after k sorting, at least one pair of stride- h elements are reversed, i.e., position i 's value $>$ position $i+h$'s value. Suppose $(i, i+h)$ is the first time for this to happen.

Note \& notation: The change happen due to the latest insertion operation in either x_{i} or x_{i+h} 's sequence, but not both. When it happens to one sequence \cdots, x_{l}, \cdots, we use $x_{l} \mid$ and $\mid x_{l}^{\prime}$ to denote the before-after values of affected positions l. For any position k whose value is unchanged, we use x_{k} to denote its value.

Proposition

Before the k sorting, the array was h sorted, and now $(i, i+h)$ values are reversed. This means one of the following two things must have happened during the k sorting: (1) the latest position is at x_{i} 's sequence, and x_{i} just increased ($\left|x_{i}>x_{i}\right|$), or (2) the latest position is at x_{i+h} 's sequence, and x_{i+h} 's just decreased $\left(\left|x_{i+h}<x_{i+h}\right|\right)$.
(1) Suppose it's the first case. Notice in the process of k insertion sorting, any element can move at most $1 \times k$ position. Most of the time, the value at a position would decrease, the only case of increase is when x_{i} is the latest position, and it's replaced by the value before it, e.g., $x_{i} \mid=\mathrm{A}$ and $\mid x_{i}=\mathrm{M}$:

Proposition

Thus $\left|x_{i}=x_{i-k}\right|$, e.g., $\left|x_{6}=x_{3}\right|=\mathrm{M}$. Because $(i, i+h)$ is the first time for the reversion to happen, $x_{i-k} \mid<x_{i-k+h}$; meanwhile, x_{i+h} and x_{i-k+h} are in the same k sequence, so when the k sort arrives at position $i+h$ later, x_{i+h} will be replaced by the largest value in this sequence, which $\geq x_{i-k+h}>x_{i-k}|=| x_{i}$, thus eventually the reversion will not happen, i.e., case (1) is eliminated.

Proposition

(2) Suppose it's the second case. Due to insertion sort, when x_{i+h} 's value is decreased, it must be due to the insertion of the latest visited element $x_{j+h} \mid$ at its sequence, e.g., $x_{6} \mid=\mathrm{A}$ is inserted upfront which makes the value of $x_{0}=\mathrm{E}$ and $x_{3}=\mathrm{M}$ decrease, thus $j>i$, and $x_{j+h}|\leq| x_{i+h}<x_{i}$.

3-seq \#0	EERMOXASPLT
(inserting AtoEM)	
3-seq \#0	AEREOXMSPLT

Proposition

Meanwhile because the value at position $j+h$ has increased, it wouldn't cause a reversion at position $(j, j+h)$ (unless x_{j} had increased even more, in which case the violation of $x_{j}>\left|x_{j+h}>x_{j+h}\right|$ means the reversion of case (1) would already happened as early as position j, which contradicts with the assumption that $(i, i+h)$ is the first time when the violation happens).

As a result, $x_{j}<x_{j+h}|\leq| x_{i+h}<x_{i}$, but because $j>i$ and j has already been visited, x_{i} and x_{j} should have been sorted, so we have a contradiction, i.e., case (2) is eliminated.

Implication of proposition

- Proposition means, if we first 5 sort the array then 3 sort the array, the array will be both 3 -sorted and 5 -sorted
- We can prove that, when an array is both 3 sorted and 5 sorted, \#comparison/swap needed by the final 1 sorting is reduced to linear (o / w will be quadratic)
- This property is due to the fact that 3 and 5 are mutually prime numbers

Complexity of 1-sorting a $(3,5)$-sorted array

Theorem. The \#swaps/comparison of 1 sorting an array that is both 3 sorted and 5 sorted is $O(N)$.

Proof. After the 3 sorting, consider every 3 consecutive values $x_{3 i}, x_{3 i+1}, x_{3 i+2}$, and how many \#swap/comparison they need in total. .

Because the array is 3 sorted, $x_{3 i}>x_{3 i-3}, x_{3 i-6}, \cdots$; meanwhile, because it is 5 sorted, $x_{3 i}>x_{3 i-5}, x_{3 i-8}, \cdots$, and $x_{3 i}>x_{3 i-10}>x_{3 i-13} \cdots$, so the only values that could be smaller than $x_{3 i}$ are: $x_{3 i-1}, x_{3 i-2}, x_{3 i-4}, x_{3 i-7}$. Similarly, we can show there are also at most 4 values that are smaller than $x_{3 i+1}$ and $x_{3 i+2}$, thus the reversed \#pairs are at most $O(N)$.

Complexity of l-sorting a (h,k)-sorted array

Theorem (Sedgewick 1996). The \#swaps/comparison of I sorting an array that is both h sorted and k sorted is $O(h k N)$, where h and k are mutually prime numbers.

Proof. If h and k are mutually prime numbers where $k<h$, we can prove the series of $h \% k, 2 h \% k, \cdots,(k-1) h \% k$ must be $k-1$ unique values (proof: $h=a k+c, i h \% k=i c \% k$, if
$(i-j) c \% k=0$, it means c is a factor of k, contradicts with the fact that k and h are mutually prime).

So $x_{k i}$ is only larger than at most $h / k+2 h / k+\cdots,(k-1) h / k=(k-1) h / 2$ numbers, thus at most $(k-1) h / 2 l$ numbers in each l-sequence, so the total number of swaps/comparison is of complexity $O(h k N / I)$.

Estimating the time complexity of Shell sort

Start from two large numbers h and k, the complexity of sorting are $(N / h)^{2}+(N / k)^{2}$, followed by a list of linear complexity, e.g., the complexity for $(h, k, 1)$ sort is $O\left((N / h)^{2}+(N / k)^{2}+h k N\right)$, so when $h=k=N^{1 / 4}$, it will be $O\left(N^{3 / 2}\right)$.

Tighter bounds: the bound depends on the gap sequence. Over the years, people have proved tighter bounds such as $O\left(N^{4 / 3}\right)$

More readings

Sedgewick's paper: http://thomas.baudel.name/ Visualisation/VisuTri/Docs/shellsort.pdf

