Data Structures Sorting

CS284

Objectives

To learn how to implement the following sorting algorithms:

- selection sort
- bubble sort
- insertion sort
- shell sort
- merge sort
- heapsort
- quicksort

To understand the differences in performance of these algorithms, and which to use for small, medium arrays, and large arrays Shell Sort: A Better Insertion Sort

Shell Sort: A Better Insertion Sort

- Insertion sort takes $\mathcal{O}(n^2)$ time
 - ▶ In the worst case, needs $O(n^2)$ comparisons/swaps
 - Disadvantage: swap distance can only be 1
 - Can we improve the time complexity if we allow long-distance swaps?
- Shell sort: long distance insertion sort
- History of shellsort:
 - It is named after its discoverer, Donald Shell
 - The time complexity depends on the actual distance being used
 - $O(n^{3/2})$ is a common bound for its time complexity
 - People have improved this bound over the years, by constructing different distance series

Disadvantage of Insertion Sort

1st round:

SORTEXAMPLE OSRTEXAMPLE

6-th round:

EORSTXAMPLE EORSTXXMPLE EORSTTXMPLE

.

Each time can only swap by distance-1

```
public void insertion_step(E[] a,
int this_idx, int stride) {
  E this_val = a[this_idx];
while (this_idx >= stride && this_val
.compareTo(a[this_idx - stride]) < 0) {
  a[this_idx] = a[this_idx - stride];
  this_idx-= stride;
  }
  a[this_idx] = this_val;
}
```

What if we can swap by longer distance?

Swap distance/stride h

stride = 7	7-sequence
SORTEXAMPLE	SM OP RL TE
	ЕХА
stride = 3	
SORTEXAMPLE	3-sequence
SORTEXAMPLE	STAL OEME
	RXP
stride = 1	
SORTEXAMPLE	1-sequence
SORT EX AMPLE	SORTEXAMPLE

Shell sort Algorithm

```
public void shell_sort(E[] table) {
    int[] gap_seq = {5, 3, 1};
    for (int h: gap_seq) {
        for (int pos = 1; pos < table.length; pos ++) {
            insertion_step(table, pos, h);
        }
}}</pre>
```

swap count = 17

Shell sort Algorithm

```
public void shell_sort(E[] table) {
    int[] gap_seq = {5, 3, 1};
    for (int h: gap_seq) {
        for (int pos = 1; pos < table.length; pos ++) {
            insertion_step(table, pos, h);
        }
}</pre>
```

swap count = 17

```
public void insertion_sort(E[] table) {
   for (int pos = 1; pos < table.length; pos++) {
      insertion_step(table, pos, 1);
   }
}</pre>
```

swap count = 36, how does Shell sort require fewer swaps while having more loops?

Shell sort: execution trace

stride = 7

SORTEXAMPLE MORTEXASPLE MORTEXASPLE MOLTEXASPRE MOREEXASPLT

	Stride - 5	
3-seq #0	MOREEXASPLT	
3-seq #0	EORMEXASPLT	
3-seq #1	EORMEXASPLT	
3-seq #2	E E R M O X A S P L T	
3-seq #0	EERMOXASPLT	
(inserting A to E M)		
3-seq #0	AEREOXMSPLT	
3-seq #1	A E R E O X M <mark>S</mark> P L T	
3-seq #2	A E R E O X M S P L T	
(inserting P to R X)		
3-seq #2	AEPEORMSXLT	
3-seq #0	AEPEORMSXLT	
3-seq #1	AEPEORLSXMT	

atrida = 2

Analysis of Shell Sort

- Why is shell sort correct? When gap = 1, reduce to insertion sort
- ▶ How does Shell sort reduce # swaps and # comparisons?
 - Answer: the fact that the array is being 5-sorted and 3-sorted makes the algorithm require fewer swaps/comparisons in 1-sorting
- *h*-sort: the process of sorting all the *h*-sequence

Proposition. After an array is *h*-sorted then *k* sorted (k < h), the array remains *h*-sorted

Proof. We can prove the proposition by contradiction.

Suppose the proposition is false, that means after k sorting, at least one pair of stride-h elements are *reversed*, i.e., position i's value > position i + h's value. Suppose (i, i + h) is the first time for this to happen.

Note & notation: The change happen due to the latest insertion operation in either x_i or x_{i+h} 's sequence, but not both. When it happens to one sequence \cdots, x_l, \cdots , we use x_l and $|x'_l|$ to denote the before-after values of affected positions *l*. For any position *k* whose value is unchanged, we use x_k to denote its value.

Before the *k* sorting, the array was *h* sorted, and now (i, i + h) values are reversed. This means one of the following two things must have happened during the *k* sorting: (1) the latest position is at x_i 's sequence, and x_i just increased $(|x_i > x_i|)$, or (2) the latest position is at x_{i+h} 's sequence, and x_{i+h} 's just decreased $(|x_{i+h} < x_{i+h}|)$.

(1) Suppose it's the first case. Notice in the process of k insertion sorting, any element can move at most $1 \times k$ position. Most of the time, the value at a position would *decrease*, the only case of *increase* is when x_i is the latest position, and it's replaced by the value before it, e.g., $x_i = A$ and $|x_i = M$:

 3-seq #0
 E E R M O X A S P L T (inserting A to E M)

 3-seq #0
 A E R E O X M S P L T

Thus $|x_i = x_{i-k}|$, e.g., $|x_6 = x_3| = M$. Because (i, i + h) is the first time for the reversion to happen, $x_{i-k}| < x_{i-k+h}$; meanwhile, x_{i+h} and x_{i-k+h} are in the same k sequence, so when the k sort arrives at position i + h later, x_{i+h} will be replaced by the largest value in this sequence, which $\geq x_{i-k+h} > x_{i-k}| = |x_i|$, thus eventually the reversion will not happen, i.e., case (1) is eliminated.

(2) Suppose it's the second case. Due to insertion sort, when x_{i+h} 's value is decreased, it must be due to the insertion of the latest visited element $x_{j+h}|$ at its sequence, e.g., $x_6| = A$ is inserted upfront which makes the value of $x_0 = E$ and $x_3 = M$ decrease, thus j > i, and $x_{j+h}| \le |x_{i+h} < x_i$.

 3-seq #0
 E E R M O X A S P L T

 (inserting A to E M)

 3-seq #0
 A E R E O X M S P L T

Meanwhile because the value at position j + h has increased, it wouldn't cause a reversion at position (j, j + h) (unless x_j had increased even more, in which case the violation of $x_j > |x_{j+h} > x_{j+h}|$ means the reversion of case (1) would already happened as early as position j, which contradicts with the assumption that (i, i + h) is the first time when the violation happens).

As a result, $x_j < x_{j+h} | \le |x_{i+h} < x_i$, but because j > i and j has already been visited, x_i and x_j should have been sorted, so we have a contradiction, i.e., case (2) is eliminated.

Implication of proposition

- Proposition means, if we first 5 sort the array then 3 sort the array, the array will be both 3-sorted and 5-sorted
- We can prove that, when an array is both 3 sorted and 5 sorted, #comparison/swap needed by the final 1 sorting is reduced to linear (o/w will be quadratic)
- This property is due to the fact that 3 and 5 are mutually prime numbers

Complexity of 1-sorting a (3,5)-sorted array

Theorem. The #swaps/comparison of 1 sorting an array that is both 3 sorted and 5 sorted is O(N).

Proof. After the 3 sorting, consider every 3 consecutive values $x_{3i}, x_{3i+1}, x_{3i+2}$, and how many #swap/comparison they need in total.

Because the array is 3 sorted, $x_{3i} > x_{3i-3}, x_{3i-6}, \cdots$; meanwhile, because it is 5 sorted, $x_{3i} > x_{3i-5}, x_{3i-8}, \cdots$, and $x_{3i} > x_{3i-10} > x_{3i-13} \cdots$, so the only values that could be smaller than x_{3i} are: $x_{3i-1}, x_{3i-2}, x_{3i-4}, x_{3i-7}$. Similarly, we can show there are also at most 4 values that are smaller than x_{3i+1} and x_{3i+2} , thus the reversed #pairs are at most O(N).

Complexity of I-sorting a (h,k)-sorted array

Theorem (Sedgewick 1996). The #swaps/comparison of I sorting an array that is both h sorted and k sorted is O(hkN), where h and k are mutually prime numbers.

Proof. If *h* and *k* are mutually prime numbers where k < h, we can prove the series of $h\%k, 2h\%k, \dots, (k-1)h\%k$ must be k-1 unique values (proof: h = ak + c, ih%k = ic%k, if (i-j)c%k = 0, it means *c* is a factor of *k*, contradicts with the fact that *k* and *h* are mutually prime).

So x_{ki} is only larger than at most $h/k + 2h/k + \cdots$, (k-1)h/k = (k-1)h/2 numbers, thus at most (k-1)h/2l numbers in each *l*-sequence, so the total number of swaps/comparison is of complexity O(hkN/l).

Estimating the time complexity of Shell sort

Start from two large numbers h and k, the complexity of sorting are $(N/h)^2 + (N/k)^2$, followed by a list of linear complexity, e.g., the complexity for (h, k, 1) sort is $O((N/h)^2 + (N/k)^2 + hkN)$, so when $h = k = N^{1/4}$, it will be $O(N^{3/2})$.

Tighter bounds: the bound depends on the gap sequence. Over the years, people have proved tighter bounds such as $O(N^{4/3})$

More readings

Sedgewick's paper: http://thomas.baudel.name/ Visualisation/VisuTri/Docs/shellsort.pdf