
Data Structures
Sorting

CS284

1 / 19

Objectives

I To learn how to implement the following sorting algorithms:
I selection sort
I bubble sort
I insertion sort
I shell sort
I merge sort
I heapsort
I quicksort

I To understand the differences in performance of these
algorithms, and which to use for small, medium arrays, and
large arrays

2 / 19

Shell Sort: A Better Insertion Sort

3 / 19

Shell Sort: A Better Insertion Sort

I Insertion sort takes O(n2) time
I In the worst case, needs O(n2) comparisons/swaps
I Disadvantage: swap distance can only be 1
I Can we improve the time complexity if we allow long-distance

swaps?

I Shell sort: long distance insertion sort
I History of shellsort:

I It is named after its discoverer, Donald Shell
I The time complexity depends on the actual distance being used
I O(n3/2) is a common bound for its time complexity
I People have improved this bound over the years, by

constructing different distance series

4 / 19

Disadvantage of Insertion Sort

S O R T E X A M P L E

E O R S T X A M P L E

O S R T E X A M P L E

1st round:

6-th round:

……

E O R S T X X M P L E
E O R S T T X M P L E
……

I Each time can only swap by distance-1

public void insertion_step(E[] a,
int this_idx, int stride) {
E this_val = a[this_idx];
while (this_idx >= stride && this_val
.compareTo(a[this_idx - stride]) < 0) {
a[this_idx] = a[this_idx - stride];
this_idx-= stride;

}
a[this_idx] = this_val;

}

I What if we can swap by longer
distance?

5 / 19

Swap distance/stride h

S O R T E X A M P L E
stride = 7

stride = 3

S O R T E X A M P L E
S O R T E X A M P L E

stride = 1

S O R T E X A M P L E
S O R T E X A M P L E

S M
7-sequence

O P R L T E

3-sequence

S T A L O E M E
R X P

1-sequence

S O R T E X A M P L E

E X A

6 / 19

Shell sort Algorithm

public void shell_sort(E[] table) {
int[] gap_seq = {5, 3, 1};
for (int h: gap_seq) {

for (int pos = 1; pos < table.length; pos ++) {
insertion_step(table, pos, h);

}
}}

swap count = 17

public void insertion_sort(E[] table) {
for (int pos = 1; pos < table.length; pos++) {
insertion_step(table, pos, 1);

}
}

swap count = 36, how does Shell sort require fewer swaps while
having more loops?

7 / 19

Shell sort Algorithm

public void shell_sort(E[] table) {
int[] gap_seq = {5, 3, 1};
for (int h: gap_seq) {

for (int pos = 1; pos < table.length; pos ++) {
insertion_step(table, pos, h);

}
}}

swap count = 17

public void insertion_sort(E[] table) {
for (int pos = 1; pos < table.length; pos++) {
insertion_step(table, pos, 1);

}
}

swap count = 36, how does Shell sort require fewer swaps while
having more loops?

7 / 19

Shell sort: execution trace

S O R T E X A M P L E
stride = 7

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O R E E X A S P L T

stride = 3

3-seq #0

3-seq #1

3-seq #2

M O R E E X A S P L T
3-seq #0 E O R M E X A S P L T

E O R M E X A S P L T
E E R M O X A S P L T

3-seq #0 E E R M O X A S P L T

3-seq #0 A E R E O X M S P L T
3-seq #1 A E R E O X M S P L T
3-seq #2 A E R E O X M S P L T

3-seq #2 A E P E O R M S X L T
3-seq #0 A E P E O R M S X L T
3-seq #1 A E P E O R L S X M T

(inserting A to E M)

 (inserting P to R X)

8 / 19

Analysis of Shell Sort

I Why is shell sort correct? When gap = 1, reduce to insertion
sort

I How does Shell sort reduce # swaps and # comparisons?
I Answer: the fact that the array is being 5-sorted and 3-sorted

makes the algorithm require fewer swaps/comparisons in
1-sorting

I h-sort: the process of sorting all the h-sequence

9 / 19

Proposition

Proposition. After an array is h-sorted then k sorted (k < h), the
array remains h-sorted

Proof. We can prove the proposition by contradiction.

Suppose the proposition is false, that means after k sorting, at
least one pair of stride-h elements are reversed, i.e., position i ’s
value > position i + h’s value. Suppose (i , i + h) is the first time
for this to happen.

Note & notation: The change happen due to the latest insertion
operation in either xi or xi+h’s sequence, but not both. When it
happens to one sequence · · · , xl , · · · , we use xl | and |x ′l to denote
the before-after values of affected positions l . For any position k
whose value is unchanged, we use xk to denote its value.

10 / 19

Proposition

Before the k sorting, the array was h sorted, and now (i , i + h)
values are reversed. This means one of the following two things
must have happened during the k sorting: (1) the latest position is
at xi ’s sequence, and xi just increased (|xi > xi |), or (2) the latest
position is at xi+h’s sequence, and xi+h’s just decreased
(|xi+h < xi+h|).

(1) Suppose it’s the first case. Notice in the process of k insertion
sorting, any element can move at most 1xk position. Most of the
time, the value at a position would decrease, the only case of
increase is when xi is the latest position, and it’s replaced by the
value before it, e.g., xi | =A and |xi = M:

11 / 19

PropositionS O R T E X A M P L E
stride = 7

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O R E E X A S P L T

stride = 3

3-seq #0

3-seq #1

3-seq #2

M O R E E X A S P L T
3-seq #0 E O R M E X A S P L T

E O R M E X A S P L T
E E R M O X A S P L T

3-seq #0 E E R M O X A S P L T

3-seq #0 A E R E O X M S P L T
3-seq #1 A E R E O X M S P L T
3-seq #2 A E R E O X M S P L T

3-seq #2 A E P E O R M S X L T
3-seq #0 A E P E O R M S X L T
3-seq #1 A E P E O R L S X M T

(inserting A to E M)

 (inserting P to R X)
Thus |xi = xi−k |, e.g., |x6 = x3| =M. Because (i , i + h) is the first
time for the reversion to happen, xi−k | < xi−k+h; meanwhile, xi+h

and xi−k+h are in the same k sequence, so when the k sort arrives
at position i + h later, xi+h will be replaced by the largest value in
this sequence, which ≥ xi−k+h > xi−k | = |xi , thus eventually the
reversion will not happen, i.e., case (1) is eliminated.

12 / 19

Proposition

(2) Suppose it’s the second case. Due to insertion sort, when
xi+h’s value is decreased, it must be due to the insertion of the
latest visited element xj+h| at its sequence, e.g., x6| =A is inserted
upfront which makes the value of x0 =E and x3 =M decrease, thus
j > i , and xj+h| ≤ |xi+h < xi .

S O R T E X A M P L E
stride = 7

M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O R E E X A S P L T

stride = 3

3-seq #0

3-seq #1

3-seq #2

M O R E E X A S P L T
3-seq #0 E O R M E X A S P L T

E O R M E X A S P L T
E E R M O X A S P L T

3-seq #0 E E R M O X A S P L T

3-seq #0 A E R E O X M S P L T
3-seq #1 A E R E O X M S P L T
3-seq #2 A E R E O X M S P L T

3-seq #2 A E P E O R M S X L T
3-seq #0 A E P E O R M S X L T
3-seq #1 A E P E O R L S X M T

(inserting A to E M)

 (inserting P to R X)

13 / 19

Proposition

Meanwhile because the value at position j + h has increased, it
wouldn’t cause a reversion at position (j , j + h) (unless xj had
increased even more, in which case the violation of
xj > |xj+h > xj+h| means the reversion of case (1) would already
happened as early as position j , which contradicts with the
assumption that (i , i + h) is the first time when the violation
happens).

As a result, xj < xj+h| ≤ |xi+h < xi , but because j > i and j has
already been visited, xi and xj should have been sorted, so we have
a contradiction, i.e., case (2) is eliminated.

14 / 19

Implication of proposition

I Proposition means, if we first 5 sort the array then 3 sort the
array, the array will be both 3-sorted and 5-sorted

I We can prove that, when an array is both 3 sorted and 5
sorted, #comparison/swap needed by the final 1 sorting is
reduced to linear (o/w will be quadratic)

I This property is due to the fact that 3 and 5 are mutually
prime numbers

15 / 19

Complexity of 1-sorting a (3,5)-sorted array

Theorem. The #swaps/comparison of 1 sorting an array that is
both 3 sorted and 5 sorted is O(N).

Proof. After the 3 sorting, consider every 3 consecutive values
x3i , x3i+1, x3i+2, and how many #swap/comparison they need in
total. .

Because the array is 3 sorted, x3i > x3i−3, x3i−6, · · · ; meanwhile,
because it is 5 sorted, x3i > x3i−5, x3i−8, · · · , and
x3i > x3i−10 > x3i−13 · · · , so the only values that could be smaller
than x3i are: x3i−1, x3i−2, x3i−4, x3i−7. Similarly, we can show there
are also at most 4 values that are smaller than x3i+1 and x3i+2,
thus the reversed #pairs are at most O(N).

16 / 19

Complexity of l-sorting a (h,k)-sorted array

Theorem (Sedgewick 1996). The #swaps/comparison of l
sorting an array that is both h sorted and k sorted is O(hkN),
where h and k are mutually prime numbers.

Proof. If h and k are mutually prime numbers where k < h, we
can prove the series of h%k, 2h%k, · · · , (k − 1)h%k must be k − 1
unique values (proof: h = ak + c, ih%k = ic%k, if
(i − j)c%k = 0, it means c is a factor of k, contradicts with the
fact that k and h are mutually prime).

So xki is only larger than at most
h/k + 2h/k + · · · , (k − 1)h/k = (k − 1)h/2 numbers, thus at
most (k − 1)h/2l numbers in each l-sequence, so the total number
of swaps/comparison is of complexity O(hkN/l).

17 / 19

Estimating the time complexity of Shell sort

Start from two large numbers h and k, the complexity of sorting
are (N/h)2 + (N/k)2, followed by a list of linear complexity, e.g.,
the complexity for (h, k, 1) sort is O((N/h)2 + (N/k)2 + hkN), so
when h = k = N1/4, it will be O(N3/2).

Tighter bounds: the bound depends on the gap sequence. Over
the years, people have proved tighter bounds such as O(N4/3)

18 / 19

More readings

Sedgewick’s paper: http://thomas.baudel.name/
Visualisation/VisuTri/Docs/shellsort.pdf

19 / 19

http://thomas.baudel.name/Visualisation/VisuTri/Docs/shellsort.pdf
http://thomas.baudel.name/Visualisation/VisuTri/Docs/shellsort.pdf

	Shell Sort: A Better Insertion Sort

