
Structure of this week’s classes

BFS vs. DFS

DFS - 4 Step Process

4-Step Process: Counting Isosceles Triangles in a Binary Tree

DFS BackTracing - N Queens

1 / 34

BFS vs. DFS

DFS - 4 Step Process

4-Step Process: Counting Isosceles Triangles in a Binary Tree

DFS BackTracing - N Queens

2 / 34

DFS vs. BFS

3 / 34

Difference DFS vs. BFS

I BFS is more suitable when the solution is near the root (more
”optimistic”), DFS is more suitable when the solution can be
anywhere in the tree (more ”pessimistic”)

I DFS is more suitable for game/puzzle problems, i.e., exploring
all paths for finding the optimal/sum/all solution

I BFS is more suitable for shortest path problems

I Time complexity: O(|V|+|E|), O(|V| + |E|), space complexity:
O(W), O(h)

I For more of BFS/DFS difference please see
https://www.geeksforgeeks.org/
difference-between-bfs-and-dfs/.

4 / 34

https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/
https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

BFS for Shortest Path

I Finding the shortest path from
Frankfurt to any cities

I Dijkstra’s shortest path
algorithm (using Greedy
approach)

I A well explained tutorial for
Dijkstra’s algorithm: https:
//www.youtube.com/
watch?v=pVfj6mxhdMw
(starting 2:08)

5 / 34

https://www.youtube.com/watch?v=pVfj6mxhdMw
https://www.youtube.com/watch?v=pVfj6mxhdMw
https://www.youtube.com/watch?v=pVfj6mxhdMw

BFS vs. DFS

DFS - 4 Step Process

4-Step Process: Counting Isosceles Triangles in a Binary Tree

DFS BackTracing - N Queens

6 / 34

The 4-Step Process for DFS in Binary Tree

I What information should the children return to the parent?

I What information should the parent pass on to the children?

I Handle the terminal nodes

I Update the optimal/complete/sum solution

7 / 34

Last Lecture: Valid BST

public boolean recursive_is_bst(Node<E> root, E lower_bound,
E upper_bound) {

if (root == null) return true;

if (root.value.compareTo(lower_bound) <= 0 ||
root.value.compareTo(upper_bound) >= 0) return false;

return recursive_is_bst(root.l_child, lower_bound,
root.value) && recursive_is_bst(root.r_child, root.value,
upper_bound);

}

I In last lecture, we talked about the above algorithm for
checking whether a binary tree is a valid BST

I We can rewrite the above method as the method in the next
page

8 / 34

The 4-Step Process: Valid BST

boolean is_valid_bst = true;

public void recursive_is_bst2(Node<E> root, E lower_bound
, E upper_bound) {

if (root == null) return;

if (root.value.compareTo(lower_bound) <= 0 ||
root.value.compareTo(upper_bound) >= 0)

is_valid_bst = false;

recursive_is_bst2(root.l_child, lower_bound, root.value);
recursive_is_bst2(root.r_child, root.value, upper_bound);

}

recursive_is_bst is more efficient than
recursive_is_bst2, Why?

9 / 34

The 4-Step Process: Valid BST

I What information should the parent pass on to the children?
I lower bound and upper bound

I Handle the terminal nodes

if (root == null) return;

I Update the optimal/complete/sum solution

if (root.value.compareTo(lower_bound) <= 0 ||
root.value.compareTo(upper_bound) >= 0)

is_valid_bst = false;

10 / 34

BFS vs. DFS

DFS - 4 Step Process

4-Step Process: Counting Isosceles Triangles in a Binary Tree

DFS BackTracing - N Queens

11 / 34

Counting Isosceles Triangles in a Binary Tree

I A isosceles triangle contains three nodes

I Two nodes are on the same level

I The third node is the first two node’s LCA (lowest common
ancestor), and

I The three nodes must form a triangle

12 / 34

Counting Isosceles Triangles in a Binary Tree

13 / 34

Counting Isosceles Triangles in a Binary Tree

count =
∑

node n

count(n as root)

14 / 34

How to Count count(n as root)

I left path len: length of path that starts from the root and
keeps going left;

I right path len: length of path that starts from the root and
keeps going right;

15 / 34

How to Count count(n as root)

count(n as root) = min(n.left path len, n.right path len)

16 / 34

Ideas - 4 Steps

I Step 1: What is the output of the recursive function?
I i.e., after we are done with the left child, what information

should it return to the parent?

I Step 2: What information should the parent pass to the
children?

I Step 3: How to handle the terminal cases?

I Step 4: Updating the optimal solution at each node

17 / 34

Step 1: What to return to parent

How to update left path len and right path len?

I n.left path len = 1 + n.l child.left path len

I Therefore, set left path len as the output

public Integer count_iso_triangle(parent)
...
child_left_path_len = count_iso_triangle(parent.l_child);
...
return child_left_path_len + 1;

}

18 / 34

Step 1: What to return to parent

How to update left path len and right path len?

I set left path len and right path len as the output

I Java does not allow two outputs

I Return a Pair<Integer> object

protected class Pair<E>{
E value1;
E value2;

protected Pair(E value1, E value2) {
this.value1 = value1;
this.value2 = value2;

}
}

19 / 34

Step 2: What to pass to children?

Nothing, because count(n as root) does not depend on any
recursive information above node n, e.g., depth of n

public Pair<Integer> count_iso_triangle(Node<Integer> root) {
...
}

20 / 34

Step 3: Handling terminal cases

I If node is null, return 0, 0

I If node does not have left child, return 0 for left path len

I If node does not have right child, return 0 for right path len

21 / 34

Step 4: Updating the Optimal Solution

At each node, update count(n as root) with
min(n.left path len, n.right path len)

total_iso_triangle += Math.min(l_depth, r_depth);

Run test code: count iso triangle

22 / 34

HW4 Part 1: Iso Triangle 2

Count the number of second type of iso triangles:

23 / 34

BFS vs. DFS

DFS - 4 Step Process

4-Step Process: Counting Isosceles Triangles in a Binary Tree

DFS BackTracing - N Queens

24 / 34

DFS BackTracing - N Queens

I DFS beyond binary tree

I So far we have been seeing examples where the solution is
based on node values in the tree

I DFS can be used for playing games, where the solution is
based on a series of decisions, where one decision can depends
on another

I Example: N Queens

25 / 34

N Queens

I Chess, 8x8 matrix

I No two queens can
be on the same
row/column/diago-
nal.

I Print all the
solutions

26 / 34

N Queens

I 92 solutions

I Every solution
consists of 8
numbers

I 1586...: place the
following 8 queens:
(1, 1), (2, 5), (3,
8), ...

27 / 34

N Queens - DFS

/**
* Recursive algorithm: for each column, try searching

* to place the queen at each row

* @param board

* @param col

*/
public void try_place_queen(int board[][], int col) {

// if reaching the terminal, it means no violation
// therefore update the optimal solution
if (col >= N) {

printSolution(board);
return;

}

28 / 34

Checking validity of partial solution

/* Search by col: try placing the queen at col

* on row = i */
for (int i = 0; i < N; i++) {

/* check the validity of the partial solution

* if it’s safe, continue the search, otherwise,

* prune the partial solution and search the next solution

*/
if (isSafe(board, i, col)) {

board[i][col] = 1;
/* for the next col, enumerate the row number */
try_place_queen(board, col + 1);
board[i][col] = 0; // BACKTRACK

}
}

}

29 / 34

Checking validity of partial solution

/** check whether the existing partial solution allow us

* place the queen at position (row, col)

* @param board

* @param row

* @param col

* @return

*/
public boolean isSafe(int board[][], int row, int col)
{

int i, j;
/* Check whether there are elements on the same row

* There will not be elements on the same col,

* because we are enumerating on the col

*/
for (i = 0; i < col; i++)

if (board[row][i] == 1)
return false;

30 / 34

Checking validity of partial solution

/* Check whether there are elements on the same
upper diagonal */
for (i = row, j = col; i >= 0 && j >= 0; i--, j--)

if (board[i][j] == 1)
return false;

/* Check whether there are elements on the same
]lower diagonal */
for (i = row, j = col; j >= 0 && i < N; i++, j--)

if (board[i][j] == 1)
return false;

return true;
}

31 / 34

N Queens - DFS

32 / 34

DFS - Summarization

I Search within a problem space for the optimal solution: e.g.,
all iso triangles, all n-dimensional array that satisfy the
NQueens definition

solution = argmaxs′∈Sscore(s)

I Exhaustive search requires exponential time

I DFS saves time by pruning, e.g., rejecting partial solutions for
NQueens that already violates the rule, do not proceed with
deeper branches, instead backtrack

33 / 34

DFS - 3Sum

Given an array nums of n integers, are there elements a, b, c in
nums such that a + b + c = 0? Find all unique triplets in the
array which gives the sum of zero.

Solution: DFS

34 / 34

	BFS vs. DFS
	DFS - 4 Step Process
	4-Step Process: Counting Isosceles Triangles in a Binary Tree
	DFS BackTracing - N Queens

